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d) An asymptotic expression for the turbulent mass flux.
Start with Eq. 19B.2-4 in the form
1dm, _ di_1 1
"D ac dy D [1+8cOv /14.5v)° |

Making the suggested substitution yields

dnl _dn ey’
afy d77 14.5v
so that
dil _ 14.5v 1
dn  DvSc'?1+7°
and
14.5v
I1(o0)-T1(0) =
(0)-11(0) = Dv.Se —— 5k 1+77
The integral is equal to
7= 72'/3 7 2 1.209
Sll‘l(ﬂ'/3) 3 \/—
It follows that
1
Sh=——————=0.057ReSc"?\/f/2
I1(0) - I1(0) !

If the Blasius expression is used for the friction factor we obtain

Sh=0.0108Re”’® Sc'3

which is within about 5% of the above value. This is good agreement.
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19B.3 Deposition of silver from a turbulent stream.

(a) We may write immediately from the results of the previous problem that

dil 145 1
dn  ReSP[f121+7

where 7 is defined as in the last example. In our situation. However, for our initial

purposes it is most convenient to write

S54cmell.4cm/s _

2.
D, v/v)=Re f/2= 2,863
P 1) 4 0.0101cm? /s

The corresponding Schmidt number is 952 as stated in Fig.19B.3(b). The concentration
gradient is then defined by

drl 1 ., dn

dn 19427 1+7p

and we are now able to calculate the concentration gradient explicitly in terms of 1.
We may now calculate the concentration gradient, and the results are shown in Fig.

(b). However, the abscissa is written in terms of

st=sw /v

where s is distance measured into the fluid from the surface under consideration. This is
done to facilitate comparison with velocity profiles. We can calculate the concentration
profile by integration of the concentration gradient with respect to s*, but this result is not
shown on the figure. It rises so rapidly to a limiting value

TI(e0) — [1(0) =1.209/1942 = 6.23-10™*

that the initial slope appears infinite on the scale of the figure, and the ordinate is
0.000623 for all readable positions.




image6.png
19B.4 Mixing-length expression for the velocity profile.

(a) For steadily driven turbulent flow in a tube, Eq. 5.5-3 gives

d, _ . r(Po—PL)
& prey =10

in which 7 = 7(*) 4+ 79 Integration gives

™ (Po—P1)
2 L

in which the integration constant Cj is zero because the other terms vanish at r = 0.
Hence,

+Co

TTr: =

_ _r(Po—"Pr)
Trz = 3 I
and the wall shear stress is
o RP=Pr)
T2
Combining the last two equations, we get
r R—
Te=TogE =T Ry=70(1_§) for0<y<R (19B.5—1)
(b) Inserting the viscous momentum-flux expression
dv.
—(v) _ B
Trz =K dy

and the mixing-length model

&
_(n)_ 2 z
o (dy)

into the result of (a), we get the differential equation

2
pﬂ(‘fy’) +y'fy‘=r.,(1_§) for0<y<R (19B.5 - 2)

for the time-smoothed velocity distribution v.(r).

(c) Setting v. = \/70/p, T = vavt, y = vy* /v, and £ = v€* /v, in Eq.
19B.5-2 gives

vt \? [ d(vat) \? d(vevt) yt
* * = - <yt <Rt
o) (o) +ratgirey = (1= F) o <m

Division of the terms of this equation by their common factor 7o = pv? = (p/v)v?

gives
2 + +
(e*y? (Z’}) +§;¢=(l }yv) for 0 < y+ < R*

in agreement with Eq. 19.4-13.
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19A.1 Determination of eddy diffusivity
In(sc,)=In(W,/ 4z D 45) (v, /2D 45)(s - )
Assume that

Weo, =0.00207,,
(a) Begin by examining the behavior at r = 0, and note that

2
W—cv”D

air ot
4

so that the volume fraction (equal to the mole fraction) of carbon dioxide

1 v(,Dz

=—-e—(0.002
beo, 16

zK 40y

where K preey is the effective diffusivity of carbon dioxide in air. Here we have assumed
the ideal gas law to hold. We must now estimate the volume fractions, and here they will
be taken as 0.0105 and 0.007 for distances of 112.5 and 152.7 cm respectively. Solving
the above equation for the effective diffusivity then gives:

K, co,=372,43.8 cm’/s
respectively.
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19B.1 Wall mass flux for turbulent flow with no chemical reactions.
a. The Blasius formula for turbulent flow in a tube may be
found in Eq. 6.2-12:

The mass-transfer analog of Eq. 12.3-7 is

sh=—_|f L Rescie
75

When these are combined, we get
Sh=0.0114Re”® Sc*?

b. If on the other hand, we use the mass-transfer analog of
Eq. 13.4-20,

1 f 1/3 ’ -
h=——_/ LR /. lar Se
S 17, 1} eSc (large Se)

then we get

Sh =0.0160Re”/® Sc¥?

which is in better agreement with experimental data.
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19B.2 Alternate expressions for the turbulent mass flux.

Seek an asymptotic expression for the turbulent mass flux for long circular tubes
and a boundary condition of constant wall mass flux. Assume net mass transfer across the
wall is negligible.

a) Parallel the approach to laminar flow heat transfer in § 9.9 to write
(8,0 = G + I (9) +C,
and show that
C =4
Here Il = (@, —@,40)/(JooD/ pDyy); £ =r/D; & =(z/D)/ReSc and the subscript
“0” indicates conditions at the wall. This is given in Section 10.8

b) Put these results into the species continuity equation to obtain

4 _14 1+ N é:de
<v,> &dé Sc® dé

This equation is to be integrated with the boundary conditions
AtE=12 Il,=0 anddIL/dE=-1

c) Integrate once with respect to & to obtain:

172
1

v,
==-4 2 &d
drl 2 -!<vz >§ d

Here Sc = u® / pDY), .




