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(b) If p = 5 atm, then Dap = 0.0116 cm?/s and z 49 = 0.01375/2 = 0.0688.
Table 18.1-1 then gives ¢ = 0.00430, whence

Vi = So\/AD gt
= (1.29 cm?)(0.00438)/4(0.0116 cm?/s)(24.5 x 3600 s)
=0.361 cm®

and the mass of vapor produced in 24.5 hr is

_ pVaMy

A= TRT
_ (2 atm)(0.561 cm®)(114.23 g/g-mol)
T 82.0578 x 293.15 cm® atm/g-mol
=0.0086 g
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18A.4 Effect of bubble size on interfacial composition.

Equations 18A.4-1 and 2 give

wA=H[ oo+'2—a]

Ts

Assuming H to be independent of r;, the ratio of wa to its value for a very large

bubble is

wao(r) _ Poo +20/7s —14 20

wAo (Oo) Do PooTs

Thus, the bubble radius corresponding to a 10% increase of w4q over its value for
a very large bubble is given by

2 2
d =0.1 or Ty = 2
PooTs Poo

For a gas bubble in water at 25°C, with po, = 1 atm, this gives the required bubble

radius as

_ (2)(72 dynes/cm)
7 (0.1)(1.0133 x 108 dyne/cm?)
= 0.00142 cm = 14 microns

s

The (normally minor) dependence of liquid-phase free energy on total pressure has
been neglected here. To include this effect, one would need partial molar volume
data for the particular system.
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18A.5 Absorption with rapid second-order reaction

a. The first thing one has to do is to determine the parameter
y from Eq. 18.1-37, using the concentrations and diffusivities given
in Fig. 18.1-2. By a trial-and-error procedure we have found that

y=4.9x10"° mm?/s. We now verify this by substituting into Eq.
18.1-37. We first have to convert the diffusivities in ft*/hr into units
of mm?/s:

(12-2.54-10 mmy/ft)*
3600 s/hr
Dy =1.95x107° ft? /hr = 0.503x 10° mm?/s

B 45 =(3.9x107° ft*/hr)

=1.006x10% mm?/s

Substituting into Eq. 18.1-37 now gives:
-5
1-erf [4.9x10 i
0.503x 10
_ 0.503x10° | 4.9x107° 4.9x10°  4.9x107
= —erf =3 €XPp| = 3
1.006 % 10 1.006 x 10 1.006x10°  0.503x 10

or

1-erf 0.3121 = (2.828)(erf 0.2207)(0.9525)

When the error functions are evaluated, using a table, we get
1-0.341=(2.828)(0.245)(0.9525)

This gives 0.66 = 0.66. Therefore, zy (t) =+/4yt gives the location of
the reaction zone as a function of t. Thus we get the following table
of results that can be compared with Fig. 17.1-2:

t zg(t) = A7t
0.625s 0.011 mm
25 0.022

10.0 0.044
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This is not in very good agreement with the graph in Fig. 17.1-2. The
reason for this may be that Eq. 415 on p. 336 of Absorption and
Extraction by Sherwood and Pigford (which corresponds to our Eq.

18.1-37), contains two errors: the  on the left side should be +r and
the D, in the argument of the second error function should be Dj.
b. To get N, at 2.5 seconds, we use Eq. 18.1-38, as follows:

_ Cag JS)
erfm
_ (1 gmol/dm®)(10 Cm/dm)3 1.006x10° mm?/s
- erf\/ (4.9x10°)/(1.006x10?) \/ (3.14159)(2.5 5)(100 mm?/cm?)

_ 1000
~0.245

1.13x10%)=4.61 gmol/cm?s
ol *)=4.61 gmol/
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b. To get N at 5 s, we use Eq. 20.1-38, as follows:

_ Ca D
erfm
) (1 gmol/dm®)(10 cm/dm)3 1.006x10° mm?/s
erf (4.9><10'5)/(1.006x10'3)J(3-14159)(2~5 5)(100 mm*/cm?)

_ 1000
0.245

(8 X 10’4)= 3.265 gmol/cm?-s
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18A.6 Rapid forced-convection mass transfer into a laminar boundary
layer.

Equation (18.2-51) gives, for the conditions of this problem,

R, = (“’0 - “’oo)

o =
nao/(nao0 +nBo) — wao
_(09-01)
=109 80

Fig. 20.8-5 gives a dimensionless mass flux ¢ of 1.55 for mass transfer at R, = 8.0
and Sc = 2.0. With this result, Eq. 20.8-21 and Table 18.2-1 give

KA K x20

155=— =
= 110,A,0) ~ 05072

so that
K =1.55 x 0.5972/2 = 0.463

The definition of K in Eq. 18.2-48 then gives the total interfacial mass flux

v

n40(z) +npo(z) = povo(z) = Kpveo oz

= 0.33v/pvoopt/z

In this problem npo(z) is stated to be zero, so the previous result reduces to

nao(z) = 0.33v/pveop/x
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18A.7 Slow forced-convection mass transfer into a laminar boundary
layer.

(a) Equation (18.2-51) gives, for the conditions of this problem, the binary
mass flux ratio
R — (wp — weo)
“ " nao/(nao +npo) —wao
(0.05 —0.01)
=-———">=0.0421
1-0.05 0.0

Eq. (18.2-55) and Table 18.2-2, with Sc= 0.6, then give
R,
1+ bR,
0.0421

= 0.4642 x (0,6_2/3)m = 0.0266

Equation 18.2-48, with the specification npo(z) = 0, then gives the evaporative
mass flux

K =aA"2/3

14

n40(z) = povo(z) = Kpveo e
oo

= 0.0266+/ pvoo i/ 2
= 0.0188v/pveopt/

(b) Eq. 18.2-57 gives

nao —wao(naotnpe) o sse2/s 330, [
PVoo Voo

which gives, since ngy = 0,

n40 = 0.332S¢
1—wao Vool

.05 —0.01
= 0.332(0.6)_2/3%\0}1}&#&

= 0.0196+/pvoop/x

(¢) At the value K = 0.0266 found in (a), Table 18.2-1 gives the interpolated
interfacial gradient II'(0,Sc, K) = 0.3797. Then Eq. 18.2-47, with ngo = 0, gives
the reference solution

n _ wo —weo IT'(0, 8¢, K) . v
A0 = 1—wp Sc Pl WeoT

_ 0.05—-0.010.3797

= 2950010877
1005 06 V/Uer/2

= 0.0188+/pvcopt/x

in excellent agreement with the truncated expansion used in part (a).
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18B.1 Extension of the Arnold problem to account for interphase
transfer of both species

Equations 18.1-1, 2, and 3 are still valid if both species are
crossing the interface. In Eq.18.1-3 we now eliminate ¢ by using Eq.
(D) of Table 15.8-2 (evaluated at the interface) to get

o = (Nso + Niso) Ix,
: NAzo“on(NAzo"’NBzo) Jz

_ (+r) o,
z=0 1_xA0(l+r) Jz z=0

When Ny,, =0 (or the ratio r = Ng,, /N 4, goes to zero), this equation
simplifies to Eq. 18.1-4.
Equation 18.1-5 is then replaced by

dx, (1+7) x4 My _ o *x,
- =53
ot \1-x,40(147) 9z |,9) 0z 0z

We now introduce the dimensionless variables IT (defined in Eq.
18.1-23) and Z (defined just below Eq. 18.1-8); note that when

X 4. =0, I1 is the same as —(X - 1). Then the combinarion of variables
method gives (cf. 18.1-9) the ordinary differential equation

a4 dil

2(Z-9)—=
a7z tUZ-0)g7 =0
along with
1(x 40— x4 J(A+7)dIT
(P(onrr):""( 40~ %4=)(1+7)

2 1-x,40(1+7r) dZlz

This is Eq. 18.1-24. If r =0 and x ., =0, it reduces to Eq. 18.1-10. The
sign discrepancy comes about because (in the limit that x,, is zero, IT

is the same as —(X —1). The solution of the ordinary differential
equation for IT proceeds exactly as that for X in the text, and the
final result is

_erf(Z- @) +erfp

I1
1+erfep
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for the concentration profile. If r=0 and x,, =0, this reduces
exactly to Eq. 18.1-16. When this concentration profile is used to
evaluate dI1/dZ at Z=0, then we get an expression for ¢(xo,7):

_ 1 (%40 — X4 )1+7)[ 2 exp(—(p2)
¢(xA0rr)_+5 1-x40(1+7) (\/E l+erf(p]

This may be rearranged to give

ey~ A roloerp(vo”)

in agreement with Eq. 18.1-25.
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18B.2 Extension of the Arnold problem to nonisothermal diffusion
a. Equation (M) of Table 17.2-4 without the last two terms is:

9N N
25c.h, +(v’ glNaHa) —(V-kVT)

Replacing the partial molar quantities by quantities per mole (see
comment after Eq. 17.3-6), and assuming that k is constant then gives

o N . N .
% Y Hy +(V- ENaH,,) =kv’T
a=1 a=1

Differentiating the products in the first and second terms allows us
to rewrite this as

N oH, N oc, N -
« «f : =kv?
a}‘,:lca +‘121 +z(v ‘N, )H, a=1(N,, VA, )=kvT

In the second term of this equation, we replace the derivative of the
concentration by using Eq. 15.1-10 (omitting the reaction-rate term),
and then we see that the second and third terms just exactly cancel.
Next, we replace the enthalpy by the heat capacity multiplied by a
temperature difference in accordance with Eq. 8.8-8, to get

) (T-1°)+ i(Na -VC,yqo(T-T°)) = kV2T

a=1

Zaatya

=1

For constant heat capacities this then becomes:

N & N
Seol L + 3Cou(N, - VT) = kYT

If all the heat capacities are alike, then they can be taken outside the
summation to get

Pe ?w (ZN VTJ kV2T
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Next we make use of cCp = pép, and then divide the entire equation
by pC,; this gives, with the help of Eq. (M) of Table 15.8-1

Ca=1

‘ZT [[ ZN) ] av’T  or %—f+(v*~VT)=aV2T

which is just the 3-dimensional version of Eq. 18B.2-1.
b. When Eq. 18B.2-1 is rewritten in terms of the dimensionless
temperature, we get

oy .oy _ aznT
% e %o

We now postulate that the dimensionless temperature is a function

only of the variable Z; =z/v4at. This leads us to the following
ordinary differential equation:

d’T1; an [t [Js
+ 2| -0 h =’ . |—= AB
dZT ( (pT) dZT where (pT z a q’ o

It was shown in Eq. 19.1-24 that ¢ is a function of the terminal mole
fractions and the interfacial molar-fluxes, but not of time. Therefore,
since @y is just @ multiplied by the square root of the Lewis number,
it may be treated as a constant in the above ordinary differential
equation. This equation may be solved by the same technique used in
§18.1 to give

1-erf(Zy - @r) erf(Z; - @r)+erfor
l+erfo; 1+erfo;

My =1-

c. To get the interfacial heat flux, we use Fourier's law:

= JT - k(T,, _To) d
fo=-k 0z |, Ty erfo; dz erf(ZT ~or )L=°
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k(Tm—TO 2 2

1+ erf(oT)ﬁeXp[_(ZT ~¢r) ]

_ _k(T.-Ty) 2 2 1

T l+erfp, (exp( )——
KT, ~T.)

\/;(1 +erfo; )exp(+(p% )\/E

Next we calculate the ratio in Eq. 18B.2-4:

Ngo+ NBO = cv; = \/a—/t
20/Cy(To—T-) 9/, (To-T.)  40/C,)(To~T-)
CC qJT \/——_. [,\/— 1 + erfw.r exp(+¢% )W]

= k;fép [«/E(l +erfor )exp(+¢} )]

=Vr(1+erfor)or exp(+97)

In the first step, we used Eq. (M) of Table 15.8-1, and later we used
the relation cC pC
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18B.3 Stoichiometric boundary condition for rapid irreversible
reaction
We begin by rewriting Eq. 18B.3-1 as

%CA[(UAz _U:)*'(U; _UR) :—%CA[(UBZ —-v:)+(v: _UR)}

Then, using Fick's first law in the form of Eq. (B) of Table 15.8-2
(along with Eq. (I) of Table 15.8-1, we get

-—%CJSAS(;;ZA lcA(v —UR) Lew %——I-CB(U*—UR)

We now make use of the fact that the system has constant ¢ so that

dc 1 dc . 1 1
__"DAS 3; +E'JSBS'£B_(UZ_OR)(;CA+ECBJ

At the plane z = z;, there is no A or B present, so that the last term on
the right side is zero. Therefore, we get

ey _ le dcg

——JSAS 5% TS,

for one of the boundary conditions at z = zj (cf. 18.1-31).
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18B.4 Taylor dispersion in slit flow

This problem can be solved by paralleling the treatment in
§18.5 for circular tubes. We give here the intermediate results along
with the corresponding equation numbers in the text. Some results
from Problem 2B.3 are needed here.

af;)f + vz,max[l —[%)z]ag’; =0, %ZA (18.5-1)
(wﬁ:%ffwﬁx (18.5-3)
392’ = v,‘;““B (1-6)%28  where =2 (18.5-7)
o, = ”ggf (e2-1¢%)2 <;’ZA> ro,02) (18.5-10)
wA—(a)A)=%éj§Z§2 a<;o;>(—§75+§2—% 4) (18.5-12)

(v,
3 2
=2BWP<”2>[2§35f AOad I geer-se)ala-e7e
_ 3(v,)B* d{w,) 8
== 23Wp<vz >[ 26@“ 3; _ 105)
— a<wA> 232<vz>2 _
=—2BWp—-= [——105 5. (18.5-13)

The quantity in brackets is the Taylor dispersion coefficient.
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18B.5 Diffusion from an instantaneous point source
a. The relevant diffusion equation is

ﬂﬁ:mwlg{ﬁﬂi]

Next we build up the quantity on the right side of the diffusion
equation by differentiating Eq. 18B.5-1, thus:

a_ (__r 20pa _, [__ 1
a P "[ 249A3t] and 15 =P Tom
a ( ) Bp,,] 3 r 7’ 3r?

ol or 28, )\ 28 ,,t) 204t

19(,0p,4)_ r? 3
S 5)=ol s

b. As r — o, we find that p, — 0, as it should.
c. Integrating over all space in spherical coordinates, we get

I

7 exp( 2/4J9A3t)r2dr sin 6d6d¢

(4 JS)ABt)
m oo
= 4ﬂmj eXP( Z)uZdu-(/lDABt)S/z
AB
my, A=

=4r (4D 45t) " =,y

(4l ) 4

In going from the first to the second line, we have made a change of

variable: r/1I4JSAB =u. -
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d. Let n=(1/48 ,5t). Then Eq. 18B.5-1 becomes

P4 =m, (n/fz)3/2 exp(-nrz)

The limit of this function as n— e is p, =m,6(x)6(y)5(z). That is
we get a delta function in the three spatial variables. In other words,
all the material is "piled up" at the origin. [For more on this, see R. B.
Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of
Polymeric Liquids, Vol. 2, Kinetic Theory, Wiley-Interscience, New
York (1987), SE.4, p. 405.]
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18B.6 Unsteady diffusion with first-order chemical reaction
(a) the thin disk catalyst particle

The reference problem is

0 _0o'e

;0(0,n) = 1;0(1) = 0
Frr Rl G (+1)

The problem of interest here is
oo o
or on’

Attempt a solution of the form

® = Oezp(—k7)

Putting this trial solution into the differential equation for @ gives the original equation

for ®, and the new equation also satisfies the initial an boundary conditions. It is our
desired solution.

—kw;0(0,n) = Lo(t1) =0

(b) diffusion and reaction from a point source
Again we may write the solution by inspection as
— kt
p=ge
Here g is the normalized probability of finding a diffusing particle, originally at the
coordinate origin, at any point and time.
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18B.7 Simultaneous momentum, heat, and mass transfer:
alternate boundary conditions.

(a) With npo = 0, Eq. 18.2-51 gives the mass flux ratio

WAQ ~ WA
R, ==
1-wao

Then with A = Sc for binary diffusion, Eq. 18.2-52 gives the following implicit
equation for the dimensionless mass flux,

1 wA0 — WAco
K=_———""72TII K
S 1wy W(0,50K)
which can be solved conveniently with Fig. 20.8-5, Eq. 20.8-21, and Table 18.2-1,
in the manner of the solution given for Problem 18A.6.

(b) With ws = 0 and ngo = —2n.40, Eq. 18.2-51 gives the mass flux ratio

0—wic

Re="7370

= WAco

Then with A = Sc for diffusion in the binary gas phase, Eq. 18.2-52 gives the
following implicit equation for the dimensionless mass flux,

=1 q
K = gowacll'(0,S¢, K)

which can be solved directly with the aid of Fig. 20.8-5, as noted in (a).

(c) A steady-state energy balance from the inner to the outer boundary of the
wall gives, for the region of laminar boundary layer,

p0v0CyTa = proCyTo + g0

whence N N
90 = poCp(Ta — To) = n40Cy(Ta — Tp)

for this one-component system. With this substitution, Eq. 18.2-50 gives the energy
flux ratio N
= n.40Cp(To — Teo)
n40Cyp(Ta — To)
T -Tw
T T.-Tp
Then with A = Pr, Eq. 18.2-52 gives the following implicit equation for the dimen-

sionless mass flux,

1T -Tw
K_PrT, To

which can be solved directly with the aid of Fig. 20.8-5, as noted in (a) and (b).

(0, Pr, K)
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18B.8 Absorption from a pulsating bubble
a. The essential point here is the calculation of the integral in

Eq. 18.1-72. Let the surface of the bubble oscillate between S, = 47R}
and S, = 47R3, with S,/S, 21, so that

S(t)=S, 2n<wt<2n+1 forn=0,1,2,---
S(t)=S, 2n+1<@t<2n+2 forn=0,1,2,--

We further let (S,/S,)* =r>1. Then in each time region, we can
calculate the value of 1/t times the integral in Eq. 18.1-72 as follows:

2
1 S, -
0<wt<1: =1 =L dE=1
@ tjo(sll
2 2
1<ot<2: Tl S} g 1pt (S d;:i(l_l +1
t°0 S, tivel S, wt\r
2 2 2
1ol S o 1e(Sy) = 1¢t (Si) 7
2<0t<3: B i = R g [ O N R
@ th s o s, 2 [s1
1
=—(r-1)+1
Pl
2 2 2
10 S - 120 S, 130 S
<wt< [ = [T 220 gp <[ 21| dE
3<wt<4 2o 5 i+l 5 +hol 5
L (&) #=2(2a)n
790l S, T ot\r
2
4<@t<5: —(r-1)+1
ot
5<wt<6 i(l—l)n
wt\r

We have now gone sufficiently far to be able to see what the pattern
is, and we can summarize the results as follows:
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jeven jodd

j<ot<j+l J_(r-1)+1 (J+U(1_1)+1
2wt 2wt \r
(=012.)

In for large values of the time, these expressions become very nearly
. . 1 1 1
<ot<j+1 21 2142
jEotsj 5(1+7) 2( r)
(G=012..)

Thus, the dimensionless molar transfer rate at the interface becomes
(according to Eq. 18.1-72) at large values of the time:

. . N o(6) 2 2
<wt<j+1 —A = —
J=Or= Cro B 7t Vier 1+ ()

(i=012,..)

If r = 1, then there is no droplet oscillation and the dimensionless
molar transfer rate is 1. For r = 2, say, the dimensionless molar

transfer rate has a square-wave form, oscillating between \[g and
1

%.

b. A more interesting problem might be to get the total moles
of A transferred at time £, using Eq. 18.1-73; for large values of the
time, we get:

. . M, (1) /(1) _ 1 \/1 1
jsot<j+l o ABtn \/2(1+r) 2(1+r)

G =012,.)

Now, if S(t)=1(S, +S,) (a constant),

My (£)= 38, (1+7)cpg /4B st/ 7
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18B.9 Verification of the solution of the Ta‘ylor—dislgersion equation
(a) Begin by writing
u=z-<v>t

dq = (aq) dt+(aq) dz
ot 0z ),
(Gl =)~ ((5),
ot ), ot ), 0z ),
o) (3
=|—1| + <v>
(Bt ., 0z l( )
360,203
ou)y \0z), \ou’ 02°
where q is any scalar, here < 0 >. Putting these results into Eq. 18.5-17 gives

[6<p>j_ 0" <8 >
ot N ou’ \

which is the desired result.

L 99 _ . 2%
(b) Our differential equation is of the form — = K —
ot 02°

where q is <p>and the proposed solution can be written as

—-‘iez _'U/2
N A W72

2
q u
N 0q/0t=—-——+
o 1/ 2t JKE
0 U
4. ——q
ou 2Kt
d’q g , u'q

? = + 2
ou 2t 4Kt
The differential equation is satisfied.

(c) Simple inspection shows that these conditions are met.
<end >
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18A.1 Measurement of diffusivity by unsteady-state evaporation.

Assuming ideal gas behavior, and insolubility of species “B” in the liquid, we esti-
mate the mole fraction of ethyl propionate in the interfacial vapor as

_ Pavap _ 415
Tao = = e = 0.0545
Eq. 18.1-1-22 gives
4Dap
AV(t) = Sz a0 [Vt — v240]

Linear interpolation to z 49 = 0.0545 in Table 18.1-1 gives ¥ = 1.0235, whence

2 T Av() 1

Dap cm?[s = (Saneh ) [\/_ \/ZTO]
_ Av() 1?
=16.48 | \/24_0}

with AV in cm® and ¢ in s. Application of this formula to the tabulated data gives
the following results:

Vi 15.5 19.4 23.4 26.9 30.5 34.0 37.5 41.5
Das 1.2 0.0281 0.0278 0.0272 0.0273 0.0270 0.0273 0.0269

The average of the last seven determinations of Dap is 0.0274 cm?/s.
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18A.2 Absorption of oxygen from a growing bubble.

The interfacial molar flux of oxygen into the liquid is given by Eq. 18.1-75 as

2n +1)D,
Nao(t) = cao (2n + LDap

for a bubble with interfacial area S(t) = at™ and interfacial liquid concentration
ca0, when a, n and cyo are constants. The solubility wao corresponds to a molar
concentration

ca0 = pwao/Ma
= (1.0 g soln/cm®)(7.78 x 107 g O,/g soln)/(32 g O2/g-mol O3)
=243 x 10° g-mol O,/cm?®
which is used here as the interfacial concentration of dissolved O,.

(a) For constant growth rate of the bubble volume, r? o t, so that r, o t1/3
and S(t) < 1?2 o t2/%, giving n = 2/3 in Eq. 18.1-75. Then at ¢ = 4 s, the interfacial
molar flux of O3 into the liquid is

Nao(t) = cao

— 2
= (243 x 107 g-mol/em®)y /W%W

=5.34x 107® g-mol/cm?s
The total absorption rate in g/s is then
wa(t) = 4mr5(¢)N o (£) M.
= 4m(0.1cm)?)(7.55 x 10™® g-mol/cm?-s)(32 g/g-mol)
=215x107 g/s

(b) For constant radial growth rate, r, o t and S(t)  t2, giving n = 2 in Eq.
18.1-75. Then the interfacial flux at time ¢t =4 s is
(44+1)Dap

Nao = cao
it

= (2.43 x 10~° g-mol/cm?)

= 7.82 x 107% g-mol/cm?-s
and the total absorption rate in g/s is
wa = 477l (t)Nao(t)Ma
=47(0.1 cm)?(7.82 x 10™® g-mol/cm?s)(32 g/g-mol)
=314x107" g/s
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18A.3 Rate of evaporation of n-octane.

Table E-1 gives the following Lennard-Jones parameters:

Species M o, A e, K
A: n-CgHys  114.23 7.035 361.
B: N, 28.013 3.667 99.8

Eqs. 15.3-14,15 then give the interaction parameters o 45 = 5.351 A and €AB =
189.8 K, and Eq. 15.3-10 gives

1 1 1
a3t 28.013) (p, abm)(5.351)%(1.185)

Dap, cm?/s = 0.0018583\/(293.15)3 (
= 0.0580/(p, atm)

(a) If p=1 atm, then Dyp = 0.0580 cm?/s and =49 = 10.45/760 = 0.01375.
Interpolation in Table 18.1-1 gives ¢ = 0.00859, and Eq. 18.1-20 gives the volume
of vapor produced in 24.5 hr as

Va = Sp\/4Dypt

=(1.29 cmz)(0.00859)\/4(0.0580 em?/5)(24.5 x 3600 s)
= 1.585 cm®

The mass of vapor produced in 24.5 hr is

_ PVaMy

~ RT

_ (1 atm)(1.585 cm®)(114.23 g/g-mol)
"~ 82.0578 x 293.15 cm? atm/g-mol
=0.0075 g

ma

(b) If p = 2 atm, then Dap = 0.0290 cm?/s and z 49 = 0.01375/2 = 0.0688.
Table 18.1-1 then gives ¢ = 0.00430, whence

Va = Sp\/4D4pt

=(1.29 cmz)(0.00438)\/4(0.00290 cm?/5)(24.5 x 3600 s)
= 0.561 cm?®

and the mass of vapor produced in 24.5 hr is
_ PVaMy

RT
_ (2 atm)(0.561 cm®)(114.23 g/g-mol)
"~ 82.0578 x 293.15 cm® atm/g-mol
=0.0053 g

ma





