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17B.3 Concentration-dependent diffusivity
a.. For this problem the diffusion equation simplifies to

d dc,
0= dz(“@AB(CA) dz)

b. One integration of this differential equation gives

and a second integration gives
Ca _
LAUJSAB )dc) = C, [ dz

The integration constant may be obtained by applying the boundary
condition at z="b:

(¢ )dcy = Cy [ dz

€ao0

Taking the quotient of these two equations gives

which is equivalent to Eq. 17B.3-1.
¢. The molar flux at the solid-liquid interface is then

de,
AB dZ

Nyl,o=-0

—_ 1 Cab ’ ’
o JgM(b"‘SJAB J.C’“’ Oas(c )dCA)
which is equivalent to Eq. 17B.3-2. The quantity in parentheses is the
concentration gradient, obtained by differentiating the result in (b)
with respect to z using the Leibniz formula.

d. When Eq. 17B.3-3 is inserted into Eq. 17B.3-2, we get
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B, -
= ;B [(CAO —cu)+3Bu(ca _CA)Z

CA0

Cab
In the second term on the right side we have

2|40

~ (2 =2 2 =2
(ca—t4) A —(cAO—ZcAocA+cA)—(cAb~2cAbcA+cA)
Ab
— (A2 2 =
= (CAo - CAb) =2(ca0 = Cap)Ca

= (C,Zqo - Cfxb) =2(cp0 = Ca)3(Ca0 +Car)

1]

0

In the third term on the right side we have

(CA _ EA )3 CA0

" (cAO 3c3oCa +3C40C5 — CA)
Al

3 3
(cAb 3CAbCA+3CAbCA CA)
+

( -c b) (CAO CAb)CA + 3(CA0 _CAb)fi
)

(CAO Cab [( +CaoCap Cib) - 3(CA0 +Cap )%(CAO + CAb)

When this is substituted into the molar-flux expression above, we get
the result in Eq. 17B.3-4.

e. If the diffusivity is linear in the concentration, so that the
terms in Eq. 17B.3-3 containing terms higher than the quadratic term
may be omitted, then the result in Eq. 17.3-4 is valid, but the
expression in brackets is just unity. This means that one gets a valid
expression for the mass flux by using the formula for constant
diffusivity, but using the diffusivity at the average concentration.
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17B.4 The Maxwell-Stefan equations for multicomponent gas
mixtures

a. If we start with the first form of the Maxwell-Stefan
equations, we have

From this, we get, by rearranging

e,
XaXy

c(va-vg)=- Vx,

which is just Eq. (F) of Table 15.8-2.
b. If we start with the second form of the Maxwell-Stefan
equation we have

Vx,=-

" (xpN,4 —x,4N5) or  xN, —x,Ny=-cd,,Vx,
AB

If now we add and subtract x,N, on the left side, we get
(va+x5)Ny =24 (N +Ng)=—cD 5V,

or

N, =2,(Ny +Np)—cD 45V,

which is just Eq. (D) of Table 15.8-2.
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17B.5 Diffusion and chemical reaction in a liquid

a. The differential equation for the steady-state diffusion
from a sphere is

14 ZdCA) m 2 dl 2
(r o kit, =0 or 52‘155 1: -b’T=0

According to Eq. C.1-6b, the solution to this equation is

r=Sey Son

¢ 4

Application of the boundary conditions that I'(1)=1 and I'(«)=0
determines the constants, and the final result is (cf. Eq. 17B.6-1)

1e?
r==-%2_
ge?
The mass flux at the sphere surface is then
dc D 45C40 AT D 5
N _Js A - AB* A0 = AB™~AQ 1 b
arlrer 50 |k R dgl,, R (1+b)

and the total loss of A from the sphere in moles per unit time is

W, = 4nR2(—‘@“”A°)[1+ KR’ ]

R Dy

b. The unsteady-state mass balance on the dissolving sphere
of species A is

d 3 2 DapCaoMa KR
dt( Rp ) = 47R (—R— 1+ s,
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Since we have used here the steady-state expression for the molar
flux at the surface of the sphere, this is a quasi-steady-state
treatment.

The integration of this equation can be accomplished as
follows: First we divide through by 47 o, to get

—R? dR _ B apcaoMy Rl1+ kiR?
dt Psph AB
Next, put all the factors containing R on the left side

R dR _ B pcsoMy
+ (kR /D ,5) dt Peph

Next we introduce a new dimensionless variable Y = R+/k{"/® . and
write

_Y dY _ kM,
T1+Y dt Psph

Then we integrate

ki€ oMy, ot
J‘Yu dy = F1ta0cMa Ita dt

1+Y psph
and finally
v )i Y KoMy,
(Y-Y,) 1n1+Y0— P (t-ty) or
k{” 1+ k/@ABR kl"éAOMA
R-R t—t
&)AB( 0)-In 1+ k7D R, P )

From this one can get the dependence of the sphere radius on the
time.
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17B.6 Various forms of the species continuity equation

a. To get Eq. (A) of Table 17.2-1 from Eq. 17.1-7, use Eq. (C)
of Table 15.7-1, in the form p, = pw, on the left side of Eq. 19.1-7,
and Eq. (S) of Table 15.8-1 on the right side.

To get Eq. (b) of Table 17.2-3 from Eq. 17.1-7, move the

term —(V-p,v) to the left side of the equation, and then use Eq. 3.5-4
(with fidentified as ®,,).

b. Rearrange Eq.17.1-11 to get

(9{;—:‘+(V-cav*)=~(v-];)+Ra

Then rewrite the divergence term on the left side by differentiating
the product

T8 e, (V-v*)+ (v Ve, )=—(V-Jo )+ R,

Then write ¢, =cx, and once again differentiate the products, thus:

(Fayy %
ot

o +x40(V-v*)+c(v*Vx,)+x,(v*Ve)

I

~(V-T)+R,

or, on rearranging

0(9;: +(v*.an)]+xa(%+(v.cv*)) =“(V'J;)+Rn

Next we may make use of the overall equation of continuity in Eq.
19.1-12 to modify the second term on the left (with the prefactor x,)

N
c(a;‘—:Jr(v*.wa)]m,,ZRﬂ =~(V-T.)+R,
B=1

This equation can be put into the form given in Eq. 17.1-15. No
assumptions have been made in getting to this result from Eq. 17.1-
11.
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17A.1 Dehumidification of air.

(a) Let A denote H20 and B denote air, as in Example 17.4-1. The interfacial
mole fraction of A is then estimated as

PH,Ovap _ 0.178 psia
p  14.696 psia

Tpg = =0.0121

The “film temperature” Ty = 3(Tp + Ts) is 65°F= 291.48 K. The gas-phase prop-
erties at Ty and g — 1.0 are:

Dap = 0.246 cm?/s from Eq. 15.2-1
¢=p/RT =4.18 x 10™° g-mol/cm®
k = 25.5 x 107° W/cm-K from CRC Handbook 2000-2001, p. 6-185

The molar heat capacity of the transferred vapor at Ty is

Cpa = 8.00 cal/g-mol-K = 33.47 J/g-mol-K

from O. A. Hougen and K. M. Watson, CPP Charts, Wiley, New York (1943), Fig.
26.

Substituting into Eq. 17.4-5 we get:
NA!,épA(s _ NAylS CDAgapA = (1In 1- TAS cDABC~’,,A
k - cDap k - 1—za0 k
_ (1-0.0180
“\1-0.0121
(01)000418 x 0.246 g-mol/cm-s)(33.47 J/g»mol'K))

25.5 x 1075 W/cm-K
= (~0.00599)(1.350) = —0.0081

Then the right-hand member of Eq. 17.4-9 takes the value

~(NayCoa/B)s 0.0081 B 0.0081
1—exp(NayCpa/k) 1—exp(—=0.0081) ~ 1— [1—0.0081+ £(0.0081)2 +...]
1
" 1-1(0.0081) +...

=1.004...

(b) From Eq. 17.4-9 we see that the quotient just calculated is the ratio of
the interfacial conduction fluxes calculated with and without allowance for diffusive
energy flux. The diffusive energy flux is evidently unimportant in this problem.
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17B.1 Steady-state evaporation
a. From Eq. (M) of Table 15.8-1 and the fact that B is

stagnant leads to N ,, = cv,. Equation (D) of Table 15.8-2 states that
N, =ca0, —c®,5(dx, /dz). Equating the right sides of these two
expressions and dividing by c gives

. . dx , . B, dx,

vZ:xAUZ—JSABE or UZ:_I X, dz
—Xa

b. When this expression for the molar average velocity is
combined with Eq. 17.1-17 (when simplified for steady state and
unidirectional diffusion with no chemical reactions), we get

2 2 2
Dy dx"~dxA:J9AdezA or dsz+ 1 (&) -0
1-x, dz dz dz dz 1-x,\ dz

‘which is just Eq. 17B.1-1.
c. Equation 17B.1-1 can also be written as (cf. Eq. 16.2-5)

(-2 252 )0

dz 1-x, dz

One integration of this equation gives (cf. Eq. 16.2-6)

1 dx,
1-x, dz

=G

and the second integration gives (cf. Egs. 16.2-7 and 8)
-In(1-x,)=Cz+C,

Then one can follow the text in §16.2 until Eq. 16.2-11 is obtained.
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17B.2 Gas absorption with chemical reaction
Equation 17.1-16 is

p(ag)t’* +v~VwA):p.L‘)ABVZa)A +7,

For constant mass density, p can be taken inside the time and space
derivatives. This gives:

We now divide by the molecular weight of species A to get

(Q;TA+V-VCA):JS)ABVZCA +R,

For steady-state diffusion, the time-derivative term can be omitted.
Since the bulk motion in the direction of diffusion is presumed to be
small, the v term can be omitted. Then we further simplify the
equation to diffusion in the z direction. This gives

d’c
0=0,;,—2+R
AB dZZ A

where R, is the molar rate of production of species A per unit
volume. If A is disappearing by an irreversible, first-order reaction,

then R, =-k{c,, so that we arrive at

d’cy 0
0=2D,p g;z/j‘ -k,

which is just Eq. 16.4-4.




