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	d.	The rate of leaching is
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16A.4 Chlorine absorption in a falling film.
The absorption rate is predicted by Eq. 16.5-18, which may be rewritten in terms
of the average film velocity by use of Eq. 2.2-20:

Wy = 2nRLcA01/%

The solubility is

a0 = pwao/Ma
~ (0.998 g soln/cm®)(0.00823 g Cl /g soln)/(70.91 g Cl,/g-mol Clz)

=1.16 x 10~=* g-mol Cly/cm?®

Then the predicted absorption rate is
Wa = 27m(1.4 x 13 cm?)(1.16 x 10™* g-mol Cl;/cm?)

. \/6(1.26 x 105 cm?/s)(20 cm/s)

(m)(13 cm)
= 8.07x 107° g-mol/s = 0.291 g-mol/hr




image5.png
16A.5 Measurement of diffusivity by the point-source method.

Directly downstream of the source, the distance s from the source reduces
to z; hence, Eq. 16C.1-3 takes the form

__Wa

" 4nDapz

Therefore, the injection rate W4 required to produce a mole fraction 4 ~ 0.01 at
p=1atm and T = 800°C= 1073K at a point 1 cm downstream of the source is

Wi = 47D4p(0.01¢c)z
= 47D 4p(0.01p/RT)z
= 47(5 cm?/5)(0.01)[(1 atm)/(82.06 x 1073 cm*atm/g-mol)|(1 cm)
=7.1x107° g-mol/s

ca
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16A.6 Mass flux from a circulating bubble.

(a) With the data provided, Eq. 16.5-20 gives the surface-average mass flux

4D,
A

_[(4)(1.46 x 105 cm?/s)(22 cm/s)
- (7)(0.52 cm)

=1.147 x 107® g-mol/cm?-s

(0.041 x 10~% g-mol/cm?)

(b) Equation 16.1-2, with the surface-averaged k. obtained by Hamerton and
Garner, gives

(NA)avg = ke(cao = caco)
= (117 em/hr)(1 hr/3600 5)(0.041 x 10~ g-mol/cm?)
=1.13 x 107° g-mol/cm?s




image7.png
16B.1 Diffusion through a stagnant film--alternate derivation
From Equation 16.2-1 we get

1 dxy Ny
1-x, dz e,y

or

1 de__ N,,

xp dz Dy

Integration gives

Ixm de _ NAz 2z dz
¥ oxg  cDyupTa

Hence
Xp _ Ny
In=22 = 5 2 (z, - z;)
Xg1  Cap
or
cDyp o Xp
Ny =—">In—>

Zy =2z Xp

Which is in agreement with Eq. 16.2-14
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16B.2 Error in neglecting the convection term in evaporation
a. Without the convection term, Eq  16.2-1 and 4 become

2
N, =-cB,,;—4 and 43, _

dz dz? 0

Integration of the latter equation twice then gives

x4 =Cz+C,

Then application of the boundary conditions gives two equations:
%4 =Cz+C, and x,,=Cz,+C,

These equation may be solved simultaneously to give

__Xa—Xa _ Xa1~Xa2
Ci=——2—22 and C,=x, +-4—%£z

277 277

Therefore, in the approximation being considered here, the mole-
fraction profile in the system is given by

Xa1—Xa Z—2Z

Xa1~ %42 2277

b. To get the result in (1) from Eq. 16.2-14, we can expand the
latter in a Taylor series, as was done in getting Eq. 18.2-16.

c. To get the solution of Example 16.2-2 by using the result in
(@), we make the following calculation

N,LRT N, RT(z,-z) (7.26x107)(82.06)(273)(17.1)

O = e /z)~ plin—5m) (755/760)[(33/755) - 0]

=0.0641 cm?/s

Hence the error is 0.0641-0.0636 %100 =0.79%

0.0636
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16B.3 Effect of mass transfer rate on the concentration profiles
a. Rewrite Eq. 16.2-14 as

1-x4 Ny (22— 2)

e 4p _
=exp 5,

1-x
N,, = In—=42 or
Zy—2z 1-x4 1-xy

When this is substituted into the right side of Eq. 16.2-11, we get

-, _( Nu(z-2) (z=2)/(z2-21) [ exp N, (z-2z)
e, 5

b. Starting with Eq. 16.2-1 and integrating directly we get

1 i _NAz

l1-x,dz ¢y

and J'x” de L =—

dz
*l-x, cJS)AB '[Zl

When the integrals are evaluated we get

1-x N
lne—*a __ Na (,
1-x4 c.ﬁ)AB(Z Z])

Changing signs and taking the antilogarithm of both sides then gives
the result in ().
c. Expanding the right side of Eq. 16B.3-1 in a Taylor series in

the argument of the exponent, we get

1-x, 1+ N,,
1-x, cd,p

(z=zy)+

If we retain just two terms in the Taylor series, and bring the "1" on
the right side over to the left side, we get

NAz(l_xAl)(Z_z )
B, !

Xa=Xp1~

which is of the form x, =mz + b, that is, a straight line function.




image10.png
18B.4 Absorption with chemical reaction

a. Equation 16.4-8 remains valid, but now the boundary
conditions are: at {=1, I'=1; and at {=0, dI'/d{=0. Hence the
boundary conditions lead to a pair of simultaneous equations:

1=C, cosh¢ +C, sinh ¢ and 0=0+C,0

from which it follows thatC, =0 and C, =1/cosh¢. Then the analog
of Eq. 16.4-9 is

I' = cosh ¢ /cosh ¢
The mass flux at the liquid gas interface at z=L is then:

dc,

_ CaoByp aT
4B,

z=L L dé’

_ 40D 4p $5inh ¢&
L cosh¢ |,

+0

NAz!

z=L =

¢=1

which leads directly to the result in Eq. 16.4-12.
b. We start with Eq. 16.4-7, the solution of which can be
written in the form of a superposition of exponentials

[=Ce% +Cpe

which is to be solved with the boundary conditions given just above
Eq. 16.4-8. This leads to the following equations for the constants of
integration:

1=C, +C, and 0=C,¢e’ - C,pe™*

These two simultaneous equations can be solved to give

1 e’ e e?

C, = = and C,= =
17 14e2 el 4e? 27 1462 el te?

Therefore , the dimensionless concentration profile is
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et ettt He! D +e ] coshg(1-¢)]

F: = =
e’ +e? el te? %[e¢ + e"”] cosh ¢

Thus we are led to the same result that we obtained in Eq. 16.4-9.
c. Equation 16.4-12 can be written thus

N, ___(CAOJS)AB) KC [T
Azlz=0 L QAB JSAB

Therefore, for very large L we get (using an expansion appropriate
for large values of the argument)

L—oeo

Nl = Cao VB agki (1~ 2exp(-2k712 /8 4y - )5 Cao B gk’

For very small values of L we get (using an expansion appropriate
for very small values of the argument)

1k1?
—_—— 4
38,

7 3 L—0
SRR
AB

_ k'/LZ
NAz|z=0 =C a0\ D 45k ,@])
AB

Similarly, Eq. 16.4-10 can be written as

" "2 "
£"—=cosh‘/ K z—tanh MT sinh k z
Cao0 Byp D45 D5

As L becomes infinite, this becomes

CA k{// . k{// [ klfll ]
—£-=cosh z—sinh zZ=exp| — Z
Cao Bap Bz Bap

As L becomes zero, the dimensionless concentration becomes unity.





image12.png
16B.5 Absorption of chlorine by cyclohexene
a. For a second-order reaction, Eq. 16.4-4 has to be replaced
by

d’c "
—SAB*‘E‘ZA"FkZéi =0
with the same boundary conditions as before. Introduce the

dimensionless variables I'=c, /c,, and {=+/kjt,, / 60 45z. Then the
differential equation becomes

dZF 2
£ _6er*=0
g

with boundary conditions I'(0)=1 and TI'(e)=0. We now let

dr/d{=p(T), so that d°T'/d¢? =dp/d{ = (dp/dT)(dT/dl)=p(dp/dT).
Then we obtain a differential equation that is first order and
separable

dp 2
—=6I'
Par

This may be inegrated, and we use the boundary condition that at
{ =00, T'=0 and also that dT'/d{=p(T') = 0:

P _ (T2
Jopdp = [, er2dr
from which

1p*=2r? or ar_ 212

g
Here we must choose the minus sign, since the slope of the

concentration vs. distance curve is negative. Then using the first
boundary condition, we can integrate this equation to get:

| QN ¢ -
[TPar=-flag  or T=(1+¢)
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Hence the final expression for the concentration profile is

b. From the result of (a) we get the absorption rate at the
liquid gas interface:

dc -
NAzL:o = _JSAB‘df = V%kzéimms
z=0
c. The equation to be solved is
d*c dj
JSAdeAJrf(cA) 0 or pdcp {é 4)
A 4B

where we have introduced the variable p as before. The resulting
equation is integrated, as before, to give

dc 2 N
;PP =5 i o RO
A second integration yields
.‘-m dE—A - _J';dz =—z

“ \](2/49,,3 )J," f(Ea)dT

Then we differentiate both sides with respect to z to get

1 dc, A-_1and de |

(/0[5 F(2a)de, % dz

= "\/(Z/JSAB )J;Aof(cA )dCA

z=0

This together with N ,,|,_ == ,5(dc, /dz)|__, gives Eq. 16B.5-2.
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16B.6 Diffusion from a suspended droplet
a. A mass balance on A over a spherical shell of thickness Ar
is (in molar units)

4m? Ny | -

4n(r+4r)* Ny, =0

rdr

or, equivalently

(47r°N )|, - (47r°N,,,)|

r+ar

Now divide by 47Ar and take the limit as Ar goes to zero to get
d
N, =0

This may be integrated to give r’N ,, = C;. We may use the boundary
condition that N,, =N,,, at r=r; (the gas liquid interface) to

evaluate the constant and obtain 7N, =77N,,.
b . Equation 16.0-1, written for the radial component in
spherical coordinates, is

d:
Ny =- JSAB%*"‘A(NM +Np,)

If gas B is not moving, then N, may be set equal to zero and the
equation may be solved for the molar flux of A:

e yp dxy

Ny =-
AT 1-x, dr

Multiplying by 7* and using the result obtained in (1), we get Eq.
16B.6-1:

¢. Equation 16B.6-1can be rearranged to give
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dr _ dx
"IN an —=-cl,, —A

r 1-x,

Integration then gives

1
rlzNArl(_;]

or

2

=—cd [~ In(1-x, )|

XA1

n

1 1
rlzNM(—— —~) = +cJ§)AB[In(1—xA2)—1n(1—xm)]

o1

This may be rearranged to give

, — 1 x
NArl( J =c,zIn22
18 Xpy

or, when solved for the molar flux of A
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16B.7 Method for separating helium from natural gas
Let A be helium and B be pyrex. Then a shell mass balance
gives the following equation

d
E(rNA’):O

Insertion of Eq. 16.0-1. with Ny, =0 and x, <<1, gives for constant
diffusivity

d( dc
w50
Integrating twice we get
¢y =C/Inr+C,
The boundary conditions are: at r=R,, ¢, =c,, and at r=R,,

€4 =Cyy. Evaluation of the constants of integration gives for the
concentration profile:

ca=Cap _ In(Ry/r)

Ca1~Caz ]-“(Rz/Rl)
Then the molar rate of diffusion through the wall is

dey _ + 0 4p(Car=C2)

N, =-8»,, %a_

o “"dr ~ rIn(Ry/R,)
and
W, =2mL-N,, = 27LD 4y (€1 = C2)

In(R,/R,)

is the molar flow rate of the helium through the pyrex tube.
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16B.8 Rate of leaching

a. The molar balance for substance A over a thin slab of
thickness Az is

NAzLS_ NAz|z+Azs 0

Division by SAz and letting the slab thickness Az go to zero yields

dN,,

=0
dz

Then inserting an approximate version of Fick's law gives

which is good for a dilute solution of A in B. Thus the diffusion
equation becomes

d’c,
dz?

=0

b. The above differential equation may be integrated to give
¢, =Cz+C,

The constants are determined from the boundary conditions that
¢, =Cpoatz=0,and c, =c 4 at z=§. The final expression is then

Ca=Ca0 _Z2 G fazCs _q_Z

Cas=Cao O €a0 = Cas s
c. The rate of leaching (per unit area) is then

dc, 1) Buplcao—c
Nyl = ‘mujzi L ==B5(ca0=Cas )(‘g] = W
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16B.9 Constant-evaporating mixtures.

(a) For this one-dimensional, steady-state, nonreactive system, the species con-
servation equations take the form

dNg;/dz =0,

and give
N, = const. for each species.

The coefficients ¢Dqp depend only on T in low-density systems, according to Eq.
15.3-16 and the corresponding formula of Mason and Monchick for polar gas mix-
tures; thus, each of these coefficients is predicted to be constant over this isothermal
system.

Assuming insolubility of nitrogen (3) in the liquid mixture, we obtain N3, = 0;
then Eq. 15.9-1 gives

dys _ N, + Naz
dz cDiz Do

as the Maxwell-Stefan equation for y;. Integration and use of the boundary condi-
tion at z = L give

Ni: Nz:
(2% CD23

lny;:[ ](Z_L) A(z—1L)

whence
ys = exp[A(z — L)] (16B.10 - 1)

Equation 15.9-1 and the condition y; +y2 + y3 = 1 then give

dy: _ y2N1z — 1 N2, + y3N:

dz cDyz D3
_ (1 =3 — y3)Ni; —y1 Vs + y3 N1z
D2 Ds3
M- Nz + Na: M | N
= Dyy n cDy2 tu (CDu + CDla)

as the differential equation for the toluene mole fraction profile y1(z). Insertion of
the notations B, C and D, and the solution for ys, gives

d;
-%—c 1B — Dexp[A(z — L))

Rearrangement of this result gives

dyl

e — Byy = —C + Dexp|A(z — L)]
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which has the form of Eq. C.1-2, with f(z) = —B and g(z) = —C+ D exp[A(z—L)].-
Using the solution indicated there, we get

v = exp(Bz) [ / exp(—Bz){~C + DexplA(z — L]}dz + K]

— KeBr_ CeBz/e-—Bzdz + DeP* /e[—Bz-l—Az-—AL]dz

—Bz
— KeBr _ 0B | plBs-aLl /e(A—B)de
-B
C D
—_ Bz = [A(z—L)]
R+ g+a-5°

The boundary condition y; = 0 at z = L gives

_ oL, C D
0=Ke +B+A—-B

The resulting integration constant is

K:[__C_ D']e—BL

B A-B

Thus, the toluene mole-fraction profile is

D - C D - C
n(z) = Z—_BCIA(Z L) _ §+ A—B] e BL+Bz+E

in agreement with Eq. 16B.10-1.

(b) Numerical results of the suggested calculation procedure are shown in the
following graph, prepared by Mike Caracotsios. Cubic spline interpolation was used
to get equilibrium vapor compositions over the tabulated range of liquid composi-
tions. The interfacial vapor composition y;o calculated from the equilibrium data
becomes equal to that calculated in step (iv) at a liquid composition 10 = 0.192.
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16B.10 Diffusion with fast second-order reaction
a. A shell balance on species A plus Fick's first law of
diffusion leads to

d*x,
dz?

=0 which has the solution x,=Cz+C,

When the constants of integration are determined from the boundary
conditions that x,(0)= x4, and x,(6)=0, the mole-fraction profile
becomes

z
Xp = on(l - g)

Then the rate of dissolution of A at the solid-liquid interface is

dx,

as _ B ssXs0
dz

Nyl o =—cB . 5

b. For the system pictured in Fig. 16B.11, we have the
following differential equations

d’x,

dz?

2
=0 (for 0<z<k8) and ddxz"=0 (for k6<z<8)
z

where x is as yet unknown. These equations have the solutions
x,=Cz+C, and x;=C;z+C,
The boundary conditions are now: x,(0)=x,, x,(k6)=0,

x5(k6)=0, and x5(8)=xp.. When these are used to get the four
constants of integration, we get the following linear profiles:

z 1 1
xazon(l‘E) and x,,:x&,(l-EJr(HK)sz)

valid in their respective regions.
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Up to this point § is unknown. This quantity can be
determined from the statement that the rate of diffusion of A into the
reaction plane must be exactly equal to the rate of diffusion of B into
the reaction plane at z = . This is expressed mathematically as:

dx

— B
+CJSBS__‘V

z=K8 Z

2=k8

When the differentiations are performed, we get

or

K 1-x

Dpsxso  Opsxp.

From this we get

l _ (1 + ‘SBstm)
K D 45X 40

Then the rate of dissolution of A at the solid-liquid interface is

¢ 0

N, —cd

z=0 =

_CBasXa0 _ D asTao (l i Jssst-»J

S dz | P 5 D 46X 40
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16B.11 A sectioned-cell experiment for measuring gas-phase
diffusivity
a. Equation 16.2-1 can be rewritten as

B pp dxp

Ny, =+
4 xp dz

Integration from z to the top of the diffusion tube (z,) gives (since
N, is constant according to Eq. 16.2-3)

or

xdXp _ Ny, = g _ Nax(2-2)
B _ Naz (2 By o s\ T8
L” xp  cBDyp L : . Xp D45

This may now be rewritten as

N,z N
Inx, =| In _N4Z Az
' ( n e J+(CJSABJZ

This suggests that when Inx;, (or log,, x;) is plotted against z, the
slope of the resulting straight line will be N, /cd 45 (0r (N4, /c 45)
divided by 2.303).

b. The plot of the experimental data of log,, x5 vs z gives a
straight line of slope 0.171. The intercept at z = z; = 0 is the logarithm
of the mole fraction of B at the interface. The intercept at log,, x5 = 0
is the total length of the diffusion path, where the mole fraction of A
is maintained at zero.

¢. We can tabulate, for the four sections of the diffusion tube,
the average distance, the average mole fraction of B , and the
logarithm (to the base 10) of the mole fraction of B, thus:

z (avg) X logyo xp
0.60 0.243 0.6144

1.60 0.359 -0.4444
2.60 0.531 -0.2749

3.60 0.785 -0.1051
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We may now use the equation in (a) to get the diffusivity. We convert
all data to c.g.s. units for the numerical calculation. We use the result
from (b) that the slope of straight line of log,, x5 vs z (from graph) is
0.171. Then

Ny,

0.171=———4=_
2.303cd .,

The molar flux of A is obtained from the evaporation rate across a
circular region of diameter 2 cm as follows:

_ (0.0274 g-moles / hr)
# " (71> em?)(3600 s / hr)

=2.423%x107° g-moles / cm’s

The total molar concentration is obtained from the ideal gas law,
p=cRT:

e (741/760 atm)
~ (82.06 cm®atm / g - mole -K)(25 + 273.2 K)
=3.984x10"° g-mole / atm

Hence, the diffusivity is

N 2.423x107
H, = Az = =0.154 cm2/s
427 (0.171)(2.303)c ~ (0.171)(2.303)(3.984x10°°)
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16B.12 Tarnishing of metal surfaces

Fick's first law as applied to the diffusion of oxygen gas
through the oxide film is

No2 = ‘Boz,Mo,

This is the form of Fick's law for a dilute solution of oxygen in
virtually stationary metal oxide. This equation may be integrated
(for a quasi-steady-state situation) with the boundary conditions
that co, =¢y atz = 0, and ¢y, =0 at z=2z(f) , where z((t) is the
slowly varying oxide film thickness at time ¢. The integration gives

C
- 0
No, =80, mo0, 2

Next we write an unsteady-state mass balance for the region
between zf(t) and zf(t+At) to account for the increase in oxygen

content between the two planes and the oxygen addition by diffusion
(z,(t +At) = 2, (£))e,x = No, At

where x is the stoichiometric coefficient in the oxidation equation,
and cr is the molar density of the oxide film, MO, . Dividing both

sides by At and letting At go to zero then gives the differential
equation for the location of the (slowly moving) oxide front

ﬁ:&.:i ) S
dt  cx cpx| MO
£ f

This equation may be integrated with respect to time, using the initial
condition that z; =0 at ¢ = 0. This gives Eq. 16B.13.1 as follows:

1, ¢ 2c,
EZ]=;/QX—‘®OZ,MO,t or z= cf_;JSOQ,MOxt
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16B.13 Effectiveness factors for thin disks
If we make the assumption that the catalyst can be treated as
a continuum, then a shell balance on species A gives:

dN,,
dz

=R,

Then, inserting the expression for the molar flux analogous to Eq.
16.7-4, we get for an irreversible, first-order chemical reaction

d’c,

i(-mA dC—A) =-kfe,  or  8," -k, =0
Z

In the second form, it has been assumed that the effective diffusivity
is constant. This differential equation may be solved for the boundary
conditions that c,(+b) = ¢ ,; the result is

c, _cosh kl”a/ﬁ;z _coshiz

¢y coshyfkja/®D,b  coshAb

The total molar flow (or the effective reaction rate in moles/time) is

o, %)

W, |=2-7R?
[Wa|=2-7R?IN,, iz

=2.7R?

=2-7R?D 4c p A tanh Ab
b

Lo

. o

For n disks of thickness b/n, this result may be modified thus:
W= n(27R2 4 4, A tanh (Ab/n)), and letting n— e

Lm[W
P

=1imn(27R2D s, A[(Abfn)+--]) = 27R2D s o, A’b = 2R bK{fac 5,

n—e

=limn(27R* D ¢ 5,4 tanh (Ab/n))
o

Then the effectiveness factor is

27R’® 4¢ 4, tanh Ab _ tanh Ab
272R2D e, A% b

Na= }L’E(WA/W?)) =
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16B.14 Diffusion and heterogeneous reaction in a slender cylindrical
tube with a closed end

a.. The mass balance over a small segment of the tube is
Mpe) 8= 1pal, 5 S = PAZS(040) =0

Division by SAz and letting the segment thickness go to zero gives

-2 fwn) =0

b. The mass-average velocity is given by
U, = 0pVy, + Oplp,

At steady state, B is not moving so that vy, is zero; if substance 4 is
present only in very small concentrations, then is quite small. Hence
v, =0.

c. Because of the result in (b), we can write the mass flux as

dw,
dz

My, = =P yp

Then the diffusion equation becomes

dZ
Pl‘)aud—z‘*f( 4)=0
or
2 2
d mzA PL PL o, =0
T

Here we have set the wall mass fraction w,, equal to that in the
main stream @, and we have introduced explicitly the first order
reaction kinetics. We have also switched over to a dimensionless
coordinate {'=z/L.
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The differential equation is to be solved with the boundary
conditions:

B.C.1: at{=0, w,=wm,
B.C.22 at{=1, dw,/dz=0
The general solution is

w4 =C,coshNg +C,sinh Ng

in which N =+/PL%k/Sp8 ;. When the constants are determined
from the boundary conditions we get
Qs =coshN{ - sinh N
Wy coshN
_ coshN{gcoshN —sinh Nsinh N{
coshN
_coshN(1-{)
" coshN

sinh N§

d. The mass flow rate of A into the capillary is

dw,
dz |,
__PpBpSda,
L df|.,
__PB S0y (=N)sinh N(1-¢)
L coshN

p£ABswAi
=A% "4l (N
( tanhN)

Wyl o =—PBasS

=0
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16B.15 Effects of temperature and pressure on evaporation rate

a. For ideal gas behavior, x4 =p,,,,/p, as pointed out
several paragraphs before Eq. 16.2-1. Since the vapor pressure
increases with temperature, according to the Clausius-Clapeyron
equation, x4, will also increase. When the total pressure increases,
x4, will decrease.

b. The evaporation rate is given by Eqs 16.2-14 and 15. Since,
at constant temperature, cop and 8,5 «<1/p, the evaporation rate
should be nearly independent of the imposed pressure.

c. The temperature dependence of the evaporation rate can
be estimated as follows: ce<1/T and (for the simple kinetic theory of

rigid spheres) & 45 o T¥2. This suggests that

(Evaporation rate at T’ : Evaporation rate at T') = (T’/T)l/2

However, it is known that the kinetic theory of rigid spheres
underestimates the temperature dependence. If one reads off the
slope of the curve in Fig. 15.2-1, we estimate that

(Evaporation rate at T” : Evaporation rate at T ) = (T’/T)m

which is a more believable result.
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16B.16 Reaction rates in large and small particles
a. Equation 16.7-11 for small R becomes, on using the
expansion of the hyperbolic cotangent for small arguments

W gg = 47R 8 4 4 [1- (14 3 (ki /8 . R?+-+-)|
= ‘(% ”Ra)(k{ﬁ)hk

where we have retained only the leading term.

For large R, we use the expansion of the hyperbolic
cotangent for large arguments (which may be found in mathematics
handbooks) to get

W 1 = 47RO 4¢ 4 [1- (AR + 2ARexp(—2AR)+--)|

=—(47R* ka4 ¢ o

where A =+/k{a/® , , and only the leading term has been retained.
Note that for small R the rate of disappearance of A is
proportional to the volume of the catalyst, whereas for large R the
rate is proportional to the surface area.
b. Equation 16B.14-2 for small R becomes, using the
expansion for the hyperbolic tangent for small arguments

[W 4] =2+ 2R?C 5 8, A(Ab =1 A% +-")
= (267R?)(k{)c 1,

Here, again, we let A =/k{a/®, , and we have kept only the leading
term.

For large R we use the expansion for the hyperbolic tangent
for large arguments to get

[W 4| =2 7R?c 10 4 A (1- 2exp(-2Ab)+---)

= (27R?YkiadD 4 ¢ 5,

Here again,[W |« volume for small R, and |W | surface area for
large R.
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16B.17 Evaporation rate for small mole fraction of the volatile liquid
According to Eq. 16.2-13

1 =1n(x,,2/xm)= 1 lnl—xm=1n(1—x,u)—].n(1—xm)

(xs)ln Xpy =Xy Xq =Xy 1-xgy Xa1 = Xa2

We now wish to expand the logarithms for the situation where the
mole fractions are much less than unity. To do this we may use Eq.
C.2-3. This gives

1 _(xAZ +3xh, +3x%, +"‘)*‘ (xm +xd + 3k +)
()1 Xa1~Xa2
_ (a1 =%a2)+ %(an ‘dz)*%(x% - x5 )+
Xa1~Xa2

= 1 1 2 2
=1+3(xa +xA2)+§(xAl +X¥a2 +XA2)+'“

This is the expression in brackets in Eq. 16.2-16.
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16C.1 Diffusion from a point source in a moving stream
a. Make a mass balance (in molar units) over the ring-shaped
area element shown in Fig. 16C.1:

(27mrarN, )L —(27rArN , )|z+Az +(27AzrN )| -+(2mAzrN,, )|, =0

T+r

Divide by 27AzAr and take the limit as the dimensions of the ring-
shaped element go to zero:

lim (rNAZ )Iz+Az B (rNAz )|
Az—0 Az Ar—0 Ar

Then using the definition of the partial derivative, we get

N, , 9 3NA,)__ 18( QNA,) ON,, _
r . +8r(r E» =0 or o o +——-———‘9Z =0

We now use the expression for the molar flux given in Eq. (D) of
Table 15.8-2:

ox . dc
A A
Ny ==eB g5 040, = =By ==
9x, dc,
Ny, =-cD,z—4 e +CuU, = JSAB———Z +C,47,

In getting the approximate expressions, we have assumed that there
is negligible convective diffusion in the r direction, and that the
distinction between molar and mass average velocity is unimportant
in this system. These assumptions would be valid if the concentration
of A in the mixture is small. When these expressions are inserted into
the equation for the molar flux, we get Eq. 16C.1-1.

b. To make the change of variable, we use c,(7,z) =c,(s,z),
and apply the chain rule of partial differentiation as follows:

(5,5 (3) %) (%) 34(%),
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Peaz_deyz dcy)z (dchz 1dc,  dc,
_(852 s a5 aae)s \dazs s s o

(3)-(2)) 432
1) 12 (%) ] (e a2 22

When these are substituted into Eq. 16C.1-1, we then get Eq. 16C.1-2.
c. Let

When these expressions are substituted into Eq. 16C.1-2, an identity
is obtained.

d. B. C. 1is clearly satisfied. To examine B. C. 2, we first have
to calculate the derivative
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aC_A = WA (_lze-a(Sﬂ) _ ﬂeﬂz(s—z))

ds  4nd\ s s
Then
2 aCA -a(s-z)
—47s JSAggzwAe (1-as)

When s is made to go to zero (which implies that z goes to zero as
well), the right side of the above equation goes to W ,, and therefore
the second boundary condition is satisfied.

To examine B. C. 3 we have to calculate the derivative with
respect to r:

ac, 8CA) r_ Wi e r
= L 1-as)t
( or )Z ( ds ), s 47:8,,38 ( as)s

where s=+r? +z2.When r—0, s goes to z, and B. C. 3 is satisfied.
The meanings of the three boundary conditions are:
B. C. 1: The concentration of A on a spherical surface at infinite
distance from the injection point must be zero (since A is diffusing in
all directions)
B. C.2: This is a statement that W , is the injection rate of A.
B.C.3: This means that the maximum in the concentration must be
on the z axis.
e. To determine the diffusivity, one can write Eq. 16C.1-3 as

In(c,8) = In(W , /470 45 ) — (U920 45 )(s - 2)

Hence, if c,s is plotted vs. (s—z) on semi-logarithmic paper, the
slope will be — (v, /24 45 ) and the intercept will be (W 4 /47D 45 ).

For more on this subject, see T. K. Sherwood and R. L.
Pigford, Absorption and Extraction, McGraw-Hill, New York (1952),
pp- 42-43; H. S. Carslaw and J. C. Jaeger, Heat Conduction in
Solids, Oxford University Press, 2d ed. (1959), Eq. 2; H. A. Wilson,
Proc. Camb. Phil. Soc., 12, 406 (1904).
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16C.2 Diffusion and reaction in a partially impregnated catalyst
Use the notation of §16.7 as well as the following dimension-

less quantities: £=7/R, T=c,/c,z, and ¢ =+kjaR*/®,. Super-
scripts I and I indicate the two regions.
a. In Region I, the diffusion equation and its solution are

14 dr® c!
Fa ) w0

In Regiion II, the diffusion equation and its solution are (cf. Egs. 16.7-
6 and 9)

I I
) ¢T™  and W= Cg coshq)§+c‘§2

The boundary conditions that have to be satisfied are:

1 d ézdl"(“)
g dé

B.C.1: at&=0, TWisfinite (whence C] =0)

B.C.22 até=x, T®W=r®

B.C.3: at&=k, drW/dé=dr®/a¢

B.C.4& até=1, rW=1

Boundary conditions 4 and 3 give us the following two equations:
1=C! cosh ¢ + C} sinh ¢

1 I n
0=- i‘z cosh¢u<+Cl ¢Smh¢K—(’:(—28mh¢K+C—z¢COSh¢K

These two equation may be solved simultaneously to get

m_ —sinh ¢« + ¢x cosh ¢px
' 7 sinh ¢(1 - k) - ¢k cosh ¢(1+ k)
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cl— cosh ¢k — px sinh px
2 7 sinh ¢(1— k) — ¢k cosh ¢(1 + k)

Therefore the concentration profiles in the two regions are:

(—sinh ¢k + ¢k cosh ¢x)cosh ¢&
m_1 +(cosh ¢k — ¢k sinh ¢k )sinh p&
" & sinh¢(1- k) - gk coshd(1+ k)

ro_1 ¢x
& sinh ¢(1- k) — cosh ¢(1+ k)

To get the concentration profile for region I, we used B. C. 2.
b. To get the molar flux at the outer surface, we need

1
dc,

W, =47R*0, =
r

r=R

After evaluating the derivative at the surface, we get finally

W, =47RD | 1- ¢ cosh ¢(1- k) + ¢x sinh ¢(1 + k)
! o sinh ¢(1- k) — ¢k cosh p(1+ k)

In the limit that k¥ — 0, this result simplifies to Eq. 16.7-11.




image39.png
16C.3 Absorption rate in a falling film

a. The total moles of A transferred per unit time across the
gas-liquid interface is W ,. This has to be equated to the amount if A
that is leaving in the film of finite thickness &:

5
W,=W jo ca(x,2)|_ 0. (x)dx

When it is assumed that A diffuses only a very short distance into the
film, then v, (x) may be set equal to the fluid velocity at the gas-liquid
interface, v, ..., and taken outside the integral. Furthermore, since
c4(x,z) is virtually zero beyond a distance small compared to §, the
integration can be extended to infinity. This reasoning leads to Eq.
16C.3-1.

b. Inserting c,(x,z) into Eq. 16C.3-1 and changing to the
variable u requires no further explanation.

¢. Changing the order of integration requires specifying the
region of integration. In this case it is a triangular region extending
from u =0 to u =e0,and from the diagonal line & =u across to & = oo,
When the order of integration is reversed, it is necessary to integrate
over exactly the same region, but this time from £=0 to £ =< and
from u =0 up to the diagonal u = £. This leads to Eq. 16C.3-3.

Having done this, the inside integral can be performed
analytically to give

4D U2,max ol \
Wy = Whe poy|~—205m 2" exp(-¢)dg

Now the remaining integral can be done also to give

48 50

an,max (_ exp(_€2 ))I': - WLCA()

4D 0
nL

z,max

=WLcy,

which is in agreement with Eq. 16.5-18.
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16C.4 Estimation of the required length of an isothermal reactor

a. The steady state mass balance over a length Al of the
reactor is
W o], = WO o, ,, — (SA)an, =0

Dividing by wAl and letting Al go to zero gives

dwyy _ Sany
dl w

or

dw,, SaN,M,
dl w

b. Next we want to use the result of Eq. 16.3-9 to write

M, My (dx,o/dl)  SaM, [2c,®AB L J
(MAon + Mpxg, )2 w é 1-3x4

Then integration gives

( Mywd ]J-x,,(L) dx 40 L
25a¢8 45 ) 4O [ M 42,40 + Mp(1= x40 )[ In(1- 1 x40)
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16A.1 Evaporation rate.

Let A denote chloropicrin and B denote air; then Eq. 16.2-14 gives, for constant
total pressure p and ideal gas behavior,

NA;l iz _ In (Iﬁ)

m=n T (22— 21) TB1

_ P Dis (m)
RT (22 — z1) PB1

Inserting the values T = 15°C = 298.15K, pp> = p = 770 mm Hg and pp; =
770 — 23.81 = 746.19 mm Hg, we get

Nl _ (770/760) atm (0.088 cm?/s) In ( 770
A#l:=5 = (82.06 x 298.15) cmPatm/g-mol (11.14 cm)  \ 746.19
=1.03 x 10™® g-mol/cm?-s

Finally, the evaporation rate in g/hr is

Wa = Na:MsS

= (1.03 x 10~ g-mol/cm?-s)(164.4 g/g-mol)(3.0 cm?)(3600 s/hr)
=0.0183 g/hr
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16A.2 Sublimation of small jiodine spheres in still air.

(a) From Table E.1 and Eqs. 15.3-14,15, we get the following values for the
system I-air:

Species M o, A e/k, K
ATy 253.81 4.982 550.

B: air 28.97 3.617 97.0
AB 4.2995 231.0

Thus, at T = 40°C = 313.15K, we get the argument value
KT/eap = 313.15/231.0 = 1.356,

at which Table E.2 gives Qp 4p = 1.251. Equation 15.3-12 then gives

1 1 1
Dap = 0.00185834 T3 ( — + — | —7——
" V (MA + Mg)pamv,ux
= 0.00185834/(313.15)3 1 + 1 1
- ’ 253.81 ' 28.97 ) (747/760)(4.2995)?(1.251)

= 0.0888 cm?/s

(b) Equation 16.2-27, with r, — oo, gives

Wa =4nr;cDapln (1 - z‘“)

1-za
rDas ( » ) -
= 4, In{———
'"RT P —PAvap

(1atm)(0.0873 cm?/s) ln( 1 )

313.15 cm®atm/g-mol)  \ 1—0.00135
= 5.767 x 10™® g-mol/s x 3600 s/hr
= 2.04x 10™* g-mol/hr

= dn(lom) 5506
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16A.3 Estimating the error in calculating the absorption rate.

Equation 16.5-18 gives
Wa = KcaovV/Das

in which K is a product of known quantities. Then the error in W resulting from
small errors Acq9 and ADyp is

AW,y = (aW"> Acao+ ( Wi ) AD4p

Bcao 0Dagp

Kcao
= K+\/DapA AD,
AB ¢A0+2m AB

Division by W4 then gives the fractional error expression

AWa  Acas | 1AD4s5

Wa cao 2 Dap

Hence, the maximum absolute percentage error in the calculation of W4 under the
given conditions is

AW,
Wa

]100

=10%-+ S(10%) = 15%

max




