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(e) Using equation 15.2-1
 , b is 1.823 for nonpolar gas pairs 





Using equation 15.3-10 with , predicts   






Using equation 15.3-12 and Table E.2, with 








And 			
At 293 K,  and from Table E.2 gives 
At 600 K,   and from Table E.2 gives 





15A.2 Self-diffusion in liquid mercury. 
Equation 15.4-5 gives
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At 473 K, the Eq. 15.4-5 predicts,   3.50 × 10-5
The linear extrapolated value is 3.87 × 10-5

15A.3 Estimation of diffusivity for a binary mixture at high density. 
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Eqs. (B), (C), (E), and (F) used to get 15B.3-1.
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b. We get, 
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Equation 17.4-5 gives

~ \1/3
oo KT (Fa
44 2T aA ‘7,4

or in cgs units,

DAA# =

' 1/3
(1.38066 x 107 1%rg/K)(T,K) [ 6.02214 x 10**molecules/g-mol /
2m(pa,g/cm-s) (200.61g/g-mol)(Vy4, cm3/g)

Insertion of the values tabulated for this problem, with p(cp) divided by 100 to get
KA, g/cm:s, gives the following results:

T(K) Daas, obs. Daax, pred. Ratio, pred./obs.
275.7 1.52 x 107° 1.24 x 107° 0.82
289.6 1.68 x 105 1.40 x 10~° 0.84
364.2 2.57 x 107° 2.16 x 10~° 0.84

The predicted self-diffusivities are about 5/6 of the measured values.
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The following properties of N and C;Hg for this problem are obtained from Table
ElL

Species M, g/gmol T, K Pey atm
AN, 28.01 126.2 335
B: 0, 32.00 154.4 49.7
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(a) The measured value Dgp = 0.181 cm?[s at T = 208.2 K permits calcula-
tion of an experimentally-based value of (¢D4p)c. The reduced conditions for this
measurement are

T

= Ty \/125228.?544 = 2136
cAdcB s :
)4

Pr= =10 g0

VoAb N335x49.7
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On Fig. 15.2-1 this state lies essentially at the low-pressure limit, with (¢cDag), =
1.9. Accordingly expressing ¢ by the ideal gas law, we find

4
)
<Das RT 42

_ 1 atm
" (82.06 x 298.2 cm®atm/g-mol
= 7.4 x 107 g-mol/cm's

(0.181 cm?/s)




image9.png
Hence, the critical ¢D4p value is

(¢Dap)e = Dap/(¢Dap)r = 7.4 X107/ 191 =357 x 107 gmol/emss
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Now, the reduced conditions for the desired prediction are

T
T, = = 2882 )06
VIcaTep 126.2x154.4
P 490 _go114

b= s 35 xi07

at which state Fig. 15.2-1 gives (¢cDap), = 1.85 . The resulting prediction is then

¢Dap = (cD4g)c(cDaB)r
= (3.87 x 10°)(1.85) =7.16 x 10 g-mol/cm's.
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(b) Equation 1523 gives the predicted critical value

1 1\ (335 x 407)1/3
%01 " 200 (126.2 x 1544 )1/12
=103 x 107° g-mol/ems.

(cDaB)e =296 x 107° (

Multiplication by (¢D4B)r = 185 as in (a) gives

¢Dap = (103 x107%)(1.85) =191 x 107° g-mol /cms.
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17A.4 Diffusivity and Schmidt number for chlorine-air mixtures.

(a) We begin by tabulating molecular parameters for chlorine and air from

Table E.1, and estimating the binary parameters 04 and € 4p/K from Egs. 15.3-
14 and 15:

o

Species M, g/g-mol o, A e/k, K
A: Cl, 70.91 4.115 357.
B: Air 28.97 3.617 97.0
AB: 3.866 186.1

Equation 15.3-12 and Table E.2 then give the following prediction of Dap for
chlorine-air mixtures at T' = 75°F = 23.89°C = 297.04 K:

Dap = 0.0018583 T3
A8 V MA MB PUABQD AB

1 1
= 3
=0 0018583\[297 04) (28 97 " 70. 91) (1)(3.866)2(1.169)

=10.120 cm?/s

(b) Equation 15.2-1 needs the following values from Table E.1:

Component M, g/g-mol T, K Pe, atm
A: Cl; 70.91 417. 76.1
B: Air 28.97 132. 36.4

The nonpolar version of Eq. 15.2-1 then gives the prediction

1.823
Dap = 2.745 x 107* ( 297.04 )

VAT, x 132.
- (76.1 x 36.4)'/3(417. x 132.)%/12(1/70.91 4 1/28.97)*/2/1 atm
=0.123 cm?/s

(c) The result of (a), and the ideal gas expression for c, give

cDap = ﬁDAB =4.92 x 107 g-mol/cm's

With this prediction of ¢D4p and the viscosity predictions of Problem 1A .4,
the Schmidt number can be calculated as

Sc = M _ K — M
pDap McDap  (zaMa+zpMp)cDap

in accordance with Eqs. G and L of Table 15.7-1. Results are as follows:
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ZCl, 0.00 0.25 0.50 0.75 1.00

U, g/cm-s 0.000183 0.000164 0.000150 0.000139 0.000131
M, g/g-mol 28.97 39.455 49.94 60.425 70.91

Sc 1.28 0.84 0.61 0.47 0.375

We see that the Schmidt number depends strongly on the composition when
My and Mp differ greatly. This fact is also illustrated in Table 15.3-1
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15A.5 The Schmidt number for self-diffusion
a) Equation 1.3-1b, written for non-tracer species A, gives
(a) Eq , P ) 8
pe = .70 x 1075 ML 2 p2 3T 10

for the critical viscosity in g/cm-s. Here My is in g/g-mol, pc4 in atm and T¢4 in
K. Eq. 15.2-2 gives

(cD —2.96x 107 = L\ A
Aax)e = 2.96 x MA+MAx Peatca

The resulting critical Schmidt number for self-diffusion with My ~ M4, is

u 7.70
—_—) = =1.84
(MACDAA*)C 2.96v/2
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(b) Figs. 1.3-1 and 15.2-1, with the result in (a) for Ms &~ My, give Sc for
self-diffusion as the following function of T, and p,:

#r(Tr, pr)
(cDaa)r(Tr,pr)

Calculations from this formula are summarized below:

Scaa. = 1.84

Phase— Gas Gas Gas Liquid Gas Gas Gas
T, 0.7 1.0 5.0 0.7 1.0 20 50
Pr 0.0 0.0 0.0 sat. 1.0 1.0 10
Hr 0.32 0.45 1.62 7.8 1.00 094 160

(cDaas)r 0.72 1.01 3.65 0.37 1.03 183 370
Scar. 082 0.82 0.82 39 1.79 0.94 080
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15A.6 Correction of high-density diffusivity for temperature.

The following properties of CH4 and C,Hg for this problem are obtained from Table
E.1:

Species M, g/g-mol T., K Pe, atm
A: CH4 16.04 191.1 45.8
B: C;H¢ 30.07 305.4 48.2

The reduced conditions (State 1) for the given ¢D4p value, calculated as de-
scribed on page 522, are

313 136
=B 130 p=— s
VI91.1 x 3054 b P T B xdse

and Fig. 15.2-1 gives (cDag), = 1.27 at this state. The reduced conditions (State
2) for the desired prediction are

351 136
Ty = ——————— = 1.45; r = —————==2.89
T /911 x 3054 Pr= 58 < 480

and Fig. 15.2-1 gives (cDaB)r = 1.40 at this state. The prediction of ¢D4p is then
obtained as follows:

(CD)TIState 2
(CD)TIState 1

= 6.6 x 107® g-mol/c-s

(CDAB)]State 2= (CDAB)[State 1

6140

=6.0x10 iz

The observed ¢Dap value at State 2 is 6.3 x 107° g-mol/cm s, in fair agreement
with this prediction.
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15A.7 Prediction of critical ¢cD4p values.

(a) Equation 15A.7-1 gives KT /e g« = 1/0.77 = 1.2987 at T = T4, and Table
E.2 gives Qp, 44« = 1.2746 at this argument value. Insertion of this result, along
with Eq. 15A.7-2, into Eq. 15A.7-1 gives

2.2646 x 10~° 1 1 1
(cDaas)e = x Tea ( + ) i

1.01 Ma  Mas ) (2.44(Tea/pca)t/?)?(1.2746)
1 1 1/2 pz/s
=2.955x107¢ [ — cA
x 10 (MA+MA~) Tclf

which verifies Eq. 15.2-2, within the uncertainty of the coefficient 1.01 determined
from low-density self-diffusion data.

(b) Evaluation of the component parameters in Egs. 15A.7-4,5 according to
Eqgs. 1.4-11a,c gives

1/3 1/3 1/6
oap =244 (T"‘A) (TCB) =244 (T“‘T°B)
PcA PcB PcAPcB

S4B 077/ TeaTon

K
Replacement of Ax by B and T.g by vTcaTep in Eq. 15A.7-1 gives

and

2.2646 x 106 T.T 1 " 1) 1
1.01 ASB\ M, " Mp) 0% 50 an

(cDaB)c =

Evaluation of 0 4p and e4p/K according to Egs. 15A.7-6,7 then gives

1 1\ (pcapes)'/?
DaB)e = 2. -6 cAle
(cDag) 955 x 10 (MA + MB) (ToaTon) e

by a procedure analogous to that given in part (a). This result reproduces Eq.
15.2-3 within the uncertainty of the empirical coefficient 1.01.
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15A.8 Estimation of liquid diffusivities.

(a) We begin by evaluating the solvent properties g = 2.6, Mp = 18.016,
and the dilute-solution viscosity u = 1.22 cp at 12.5°C from a plot of the data
for liquid water in Table 1.1-2. The solute, acetic acid, has a molecular weight
M, = 60.052, and its molar volume V4 = M4/p at its normal boiling point is
60.052/0.937 = 64.1 cm?/g-mole. The Wilke-Chang formula, Eq. 15.4-8, then gives
the following prediction at 12.5°C:

sVsMBT
V3o

74 10-5 YEOIEDIO)(273.15 + 12.5)
= fax (1.22)(64.1)75

Dap=T74x10"

=98x107°
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(b) For a given composition, Eq. 17.4-8 predicts D4p to be proportional to
T/p. Let Ty = 15°C = 288.15K, and Ty = 50°C=323.15K.  Then, the predicted
diffusivity for a dilute aqueous solution of methanol at T, is viscosity of water at 50°C
is taken from Table 1.1-2 using interpolation

(DaBHk)|, T
bz, T

1.14 cp 323.15K
=(1.28x10™° cm? ————) P
(128 %107 em?/s) | 2 ) \ S8s 1ok

Dasly, =

= 2.924 % 105 cm?/s
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15B.1 Interrelation of composition variables in mixtures
a.. To get Eq. (H), use Egs. (A) and (D)

_molesof & _ Py _ _ (massof @)/ volume
volume M, (massof a)/(moles of )

and Eq. (I) follows immediately.
To get Eq. (J), use Egs. (F) and (E)

N 1N c
D
a=1 Ca=1 ¢

Equation (K) may be obtained similarly.
To get Eq. (L), use Egs. (F), (J), and (B) thus

and Eq. (M) may be obtained in a similar way.
To derive Eq (N), we use Egs. (F), (H), and (C) to get
C(l
x =

fa_ Agfoa/Ma) _ Agpm/Ma)(l/p) Agw,,,/Ma)
¢ X(os/Mp) E(f’ﬁ/Mﬁ)(l/P)%(“’ﬂ/Mﬁ)

B=1 p=1

The derivation of Eq. (O) is done in like manner.
b. To get Eq. (P') from Eq. (P),
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In going from line 1 to line 2, we used Eq. (M) and then Eq. Eq. (K). To

get line 3, we used Eq. (K) again. The same method is used to get Eq.
) fro Eq. (Q).

c. First we must write the binary equivalent of Eq. (N) in such

a way that only one variable appears on the right side (we have to

keep in mind that the two mass fractions cannot be varied
independently):

Dy Oy
M, M,
[0 +a)3 W4 +1—cuA
My, My M, M

Then to get Eq. (P'), we differentiate

1 (O
Vx, = MlA Vo, - My 2[ 1 _1 )Va)A
Dy 1704y 0, 1-o, M, My
M, Mg M, M,

= 2 Vo,
04 1m0,
My Mg
W, + 0y 1
__ MMy __ MM, Vo

The derivation of Eq. (Q') from Eq. (O) proceeds similarly.
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15B.2 Relations among the fluxes in multicomponent systems
a. To verify Eq. (K) of Table 15.8-1, we proceed as follows:

2 Zpa(v -v)= Epav —29.;

a=1 a‘l

-pXor-vip,
= pv vp=0
The proof of Eq. (O) of Table 15.8-1 proceeds analogously.
b. The verification of Eq. (T) of Table 15.8-1 follows directly
from the definitions of the fluxes:
je=plva-v)  amd  m,=pv,

Substitution of these definitions into Eq. (T) gives

N
Pa(Va=V)=PaVe~ waﬂEngﬂ
-1
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This can be rewritten as

N
PaVa=PaV=PaVa —pw,,BE(pﬁ /o)
-1




image24.png
N
“PoV= -Paﬂ}‘,wavfz
=

Then, use of Eq. (B) of Table 15.7-1 completes the verification.
The verification of Eq. (X) of Table 15.8-1 may be done
analogously.
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15B.3 Relations between the fluxes in binary systems
The expressions for the fluxes are

ja =pA(VA _V)
JA:CA(VA“V*) or MAJ;:pA(vA_V*)

Next form the difference between the above expressions, and then
repeat for species B

jA“MAJ:quA(V_V*) and jE_MBJ;=pB(v_V*)

Then eliminate v —v* between these two equations to get

o MJa_ds M}
Pa P4 Pz Pp

Then use Egs. (K) and (O) of Table 15.8-1 to eliminat the fluxes with
subscripts B and then rearrange to get

(1 1Y (M, MB) .[1 1] ,[1 1)
+ =] + or —t+— =] —+—
]A(pA pB) A[ Pa  Pg Ja Pa  Ps ea o

whence

j PatPs =7 Catcy
A PaPs e ACB Please check, as this table has been deleted.

1
where Eq. (H) oas been used. Next use Egs. (B), (C),
(E), and (F) to get Eq. 15B.3-1.
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15B.4 Equivalence of various forms of Fick's law for binary mixtures
(Note: Problem 15B.3 should be worked prior to Problem 15B.4)

a. To get Eq. (B ) of Table 15.8-2, we start hy rewriting Eq. (A)
by using Eq. 15B.3-1

« PO4Op
A =-pDp— 5+
X pXp

MMy g
M?
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1
X4 _Ca P _P

@y

€ Pa

cM,




image30.png
¥, = _g[eL.gL]p‘@AB MaMs G = e ,3Vx,

(ofc)’

Equation (D) of Table 15.8-2 follows at once from Eq. (B) of
Table 15.8-2 and and Eq. (V) of Table 15.8-1:

Ny =c v+ =c v *—cd 5V,

Equation (F) of Table 15.8-2 is obtained by writing Eq. (C) of
the same table for both species A and B after using Eq. (I) of Table
15.8-1:

ca(va—v*)=—cd,Vx, and cp(vp—v*)=—cd 5V =+cd 15V,

These equations may be rewritten as
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(VA—V*)=—-x——J9ABVxA and (vB—v*)=+iJ.‘)ABVxA
A X

Subtraction of these equations eliminates the molar average
velocity, and we get

D4p
XaXp

vA—-vB:—(i )JS)ABVxA— Vx,

Xa Xp

b. To get the first equation, we use is Eq. (Q) ofcTable 17.7-1 >

MM

ja =—PD V0,4 =—pD 4y —2EVx,

From this equation, we conclude that the expressions written in a

mixture of molar and mass quantities are more complex than those

written entirely in molar quantities alone or mass quantities alone.
To get the second equation, we start with Eq. (B) of Table

15.8-2 (which we have seen in (4) can be obtained from Eq. (A)),
written for species A and B

Ja=—cd,pVx,
J5 =—cD,pVxp = +cd 45V,

Then we rewrite these equations in terms of the combined molar
fluxes (using Eq. (V) of Table 15.8-1)

N,y —c v =—cd 5V,

Ng —cpv* =+cd 45Vx,

We now multiply the first equation by x and the second by x, to get
xgN 4 —cx,xpv* = —x5cd 1z Vx

x4Np —cx x5v* =+x,cd ;Vx,
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Subtracting the second equation from the first then gives Eq. 15B.4-2
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Subtracting the second equation from the first then gives Eq. 15B.4-2
after use has been made of Eq. (]) of

x4Ng—xgN, =cd,;Vx,

This equation contains no reference to the mass average velocity or
the molar average velocity. That is true also of Eq. (E) of Table 15.8-

2, which can be derived in analogous fashion from Eq. (A) of the same
table.

c. We start by rewriting Eq. (F) in the following form

1
XaXp

+
Vo=V =-Dyp VxA:"’@AB(xB XAJVXA

XaXp

This may also be written as

Va~Vp= _“BAB(XL + xiijA = ‘JSAB(ZJE‘A; - %}
4 B X4 B

Then, finally

Va-Vp=—d,,(Vinx, —me3)=—.,®ABv1ni—A
B
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15C.1 Mass flux with respect to the volume average velocity
a. Using the definitions of j, and j, we get

vl = Vv, +c;Vpv,= cAVA(li +v] +cBVB(%+v)
P

Using the relation just after Eq. 15C.1-3 the above result gives the
relation between the volume average velocity and the mass average
velocity

.— = _V__A-_E i
=

If we now subtract Eq. (E) of Table 15.8-1 from Eq. 15C.1-2 we get
.. . Vi V).

™ -ia=-p4 (V- - V) = —pﬁ(_A— - —‘B—)]A

Then, using the relation just after Eq. 15C.1-3 we get

. 1- _VL _V_B — VA VB_ VA + VB
Ja ]A( Pa +P4 J ’A(pAMA +PBMB pAMA pAMB

and this leads to Eq. 15C.1-3

. . (7 7,) . 7
JE=1A(pB By Jmp B

p B
My Tt M, M,

b. Starting from Eq. 15C.1-3 we have
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1 PA PA Pp \[1=caV4
=-pd 5| =V, \% +
P ’”’(p o p]( M\ ¢

¢V, c,V
=-0 45V, —(JSABVpA )[;\)/; Bc B - 1‘\? Ac A)
B CB B CB

Prg v P\ Vs
( p ¥ p)[ My ]( Cp
=80 ,5Y04 — (D45VP4 )[_Cs CAVA)
[pA B ,45V(P4 +PB)) v,

Pp

= =8 ,5VP4 +cAV 1B 45VP4 +5Vp p_A"@ABVpB
B
=8,V + 0D 4p(V4 Ve, + VBVCB)

Since the second term on the right side is zero, we get Eq. 15C.1-4.

To get the equation just after Eq. 15C.1-4, we proceed thus.
The definitions of the partial molar volumes enable us to write

dV =V dn, + Vydng

Since the volume is a homogeneous function of order 1, we get from
Euler's theorem:

V =n,V, +nV;, orby dividing by V: 1=c,V, +c;Vp (#)
Forming the differential of V from this equation gives

AV =n,dV, +V dn, +ngdVy + Vydn,

Comparing this with the first equation gives

n,dV 4 +ndVy =0, or by dividing by V: cadV, +czdVy=0 (*

Differentiating (#) and subtracting (*) gives the desired result.
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15C.2 Mass flux with respect to the solvent velocity
a. First we rewrite Eq. 15C.2-1 as

Ja =Pa(Va =)= pu(vn - V)

Then we modify the terms on the right side as follows
. P A
i = (v =) 2o (v =)=~ 22
Pn Pn
Here we have used the definition in Eq. H of Table 15.8-1.

b. Application of Eq. 15C.2-2 to a binary system with N = B
gives

Then we make use of Eq. (K) of Table 15.8-1 and Eq. (A) of Table 15.8-
2 to get

i =ia —[”—A)(—n)=n(1+"—ﬂ)

Pp Pp
[(PatPp)|_. | P P
= = =— p.&) Vw
]A( s ) ]A(pBJ (pB) ABY Wy

c. For a very dilute solution of A in B, we know that p; = p, so

that

ji =-pB Vo,
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15A.1 Prediction of a low-density binary diffusivity.

(a) We begin by looking up the needed properties of the species from Table
E.1:

Species M, g/g-mol T, K De, atm

A: CH, 16.04 191.1 45.8
B: C,Hs 30.07 305.4 48.2

Equation 15.2-1 then gives the following prediction of D 4p for methane-ethane
(treated here as a nonpolar gas-pair) at p =1 atm and T = 293K:

T b
W—) (PeapeB)*(ToaTen)*12(1/M4 + 1/Mp)' /2 /p
cAlcB
293 1.823
VIOLI x 305.4)
- (45.8 x 48.2)1/3(191.1 x 305.4)°/12(1/16.04 + 1/30.07)*/2 /1 atm

=0.152 cm?/s

DAB=a(

=2.745 x 10™* (

(b) Equation 15.2-3 gives

1 1\ (peapen)'’?
Dap)e = 2.96 x 107° e
(cDaB) x (MA + MB) (TorTop)i 72

L 12 (45,8 x 48.2)1/3
16.04 ' 30.07) (191.1 x 305.4)1/12
=4.78 x 107® g-mol/cm-s

=2.96x 107 (

The reduced conditions for Fig. 15.2-1 for this problem, calculated as described on
page 522, are

- I . 293 =121
" VTeaTep V1011x 3054
p 1.0

pr= =0.021

VPeAbes VA58 x 48.2

At this reduced state, Fig. 15.2-1 gives (cDag)r = 1.20. Hence, the predicted
value of cDgp is 1.20(¢cDap). = 5.74 x 107%. Dividing this result by the ideal-gas
prediction ¢ = p/RT =4.16 x 10™° g-mol/cm™* at this low-density condition gives
Dap = 0.138 cm?/s.

(c) Equations 15.3-14 and 15 give the binary interaction parameters

043 = (3.780 +4.388)/2 = 4.084A and eap/K = /154 x 232 = 189 K
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when the Lennard-Jones parameters of Table E.1 are used for the individual species.
Then, at KT /e 4B = 293/189 = 1.550, Table E.2 gives Qp ap = 1.183, and Eq. 15.3-
12 gives the prediction

1 1
Dap = 0.00185834 T3 ( 1 + ) 3
Ma Mg ) po%pQecaip,aB

1 1 1
- 3
0'0018583\/(293) (16.04 + 30.07) (1)(4.084)%(1.183)

=0.146 cm?/s

(d) Use of Eqgs. 1.4-11a,c with the combining rules of Egs. 15.3-14,15 gives the

estimates
eap/k = 0.77v/191.1 x 305.4 = 186.0 K

1/3 1/3 .
(T‘A) + (T”‘) ] = 42224
PcA PcB
Then at kT /e 4B = 293/186.0 = 1.575, Table E.2 gives Qp 4p = 1.1755, whereupon
Eq. 15.3-12 gives

1 1 1
‘ _ 5
Das 0‘0018583\/(293) (16.04 + 30.07) (1)(4.222)7(1.1755)

2.44
2

OAB =

=0.138 cm?/s
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