
Solution Manual for Chapter – 14

14A.1. Approximation of a black body by a hole in a sphere. 
From Table 14.2.1, for oxidized copper, e = 0.57.
Use Eq. 14.2-12
[image: ]


Then using the definition of f, we write

						(D)
Then solving for the hole radius, we get

				(E)



14A.2 Efﬁciency of a solar engine. 
The area of the mirror is . 
Since the solar constant (heat flux entering the earth's atmosphere) is, according to Example 14.4-1, 1.35 kW/m2, the energy input to the solar device is 

Therefore, the efficiency of the solar device is 
Efficiency 

14A.3 Radiant heating requirement. 
As the floor is totally covered by roof and walls, taking the view factor as 1 and as all surfaces are black so emissivity is also 1.
In this case, the heat transfer can be represented by 



A1 = 50 m2 = 500000 cm2




14A.4 Steady-state temperature of a roof. 
Since June 21 is (conveniently) very close to the summer solstice, the angle of incidence of the sun's rays on a ﬂat roof may be calculated quite simply. We know that the earth's axis is tilted at an angle of about 23.5 degrees. Thus, the angle of incidence of a ﬂat roof at 4.5 degrees north latitude will be about degrees. 

The heat received by the roof will be given by the solar constant multiplied by the cosine of the angle of incidence and then further multiplied by the absorptivity of the surface:  in units of W/m2.

We now equate the radiant energy received from the sun by the roof to the radiant energy emitted by the roof plus the heat lost by convective heat transfer for the two cases given in parts (a) and (b):


(a) 	For a perfectly black roof, we have
  
 for perfectly black

This equation may be solved by trial and error to get 

(b) For the ﬂat roof with  and  we get, 
  
 


This equation may be solved by trial and error to get 


14A.5 Radiation errors in temperature measurements.
[image: ]
e = 0.8
𝜎 = 5.670 x 10-8 W/m2 K4
h = 280 W/m2 °C
Tth = 260 °C = 533 K
Twall = 150 °C = 423 K

Substituting above values in the equation (A)



Solving this for Tgas we get
Tgas = 540.9 K

There is thus a 7.9 K difference between the calculated gas temperature and the thermocouple reading.
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14B.6. Heat loss from an insulated pipe. 
(a) Eq. 9.2-29 gives for this problem 
[image: ]
In which  
;    
With these dimensions and the given thermal conductivity values, we then obtain from Eq. A


 at 
 at 

(b) 	The net radiative heat loss is given by Eq. 14.5-3. Setting for the aluminum foil, we get
[image: ]

     at 
     at 
The free convection heat loss is predictable as in §14.6. For Ta = 37 °C , Example 14.6-1 gives 

For , Eqs. 13.6-4,5 and the procedure outlined in §13.6 gives
[image: ]
The needed properties of air at (395+300)/2=347.5 K=74.35°C are obtained from the ideal gas law, from Table 1.1 2, and from CRO Handbook of Chemistry and Physics, 8181; Ed. ,2001-2002, pp. 6-1, 6-2, and 6-185. 
  ;    ;    
 ;    
Hence: 
[image: ]


And

Therefore, 
[image: ]

Giving
[image: ]
   at
   at

(c) 	Linear interpolation to zero heat accumulation at the outer surface gives the steady-state values 

[image: ]
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Assume that the thermocouple behaves as a gray body in a
large black enclosure, and equate the net radiation loss to the
convective heat input:

‘)O-(Tti - Tv%all ) = h(Tgas - Tth) (A)

in which Ty, is the thermocouple junction temperature.
For the conditions of this problem
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14A.6 Surface temperatures on Earth’s moon.

(a) A quasi-steady-state energy balance on a lunar surface element that directly
faces the sun gives

4
Toa = eoT; fnax

in which Iy is the solar constant, T max is the temperature of that surface element,
and a and e are its total absorptivity and emissivity. Setting a = e for a gray
surface, and using the value calculated in Example 14.4-1 for the solar constant, we
obtain the quasi-steady-state estimate

Ty max = (Ioo)/* = (430/1.7124 x 107°)*/* = 708°R

" of the maximum temperature on the moon.

(b) For a spherical lunar surface, receiving radiation from the sun only, the
local intensity of incident radiation is

_JIpcosh, for0<6<7/2
I,(e)_{O form/2 <6 <,

when the sun is treated as an infinitely distant point radiator. Here 6 is the angular
displacement from the surface location nearest the sun. Replacement of Iy by I(6)
in the result of (a) gives the quasi-steady-state temperature prediction

T(6) = T max cosl/"(O) for0 <0 < 7/2;
0 form/2<f<m

This prediction becomes less accurate in the partially shadowed region (penum-
bra), given by |§ — 7| ~ 0.0046 for a spherical lunar surface and the solar dimensions
shown in Fig. 14.4-1. Transient energy transport and shadows cast by the rugged
lunar topography also become important in this region, and radiation emitted and

reflected from Earth and the other planets become significant on the dark side of
the moon.
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14B.1 Reference temperature for effective emissivity

By the assumption of linear variation of emissivity with
temperature we write

=a+bT

where @ and b are constants. Then

e, —e°=b(T, -T°) and e, —e°=b(T, - T°)
and

(e, —e°)Tf =b(T, - T°)T}

(e, —e°)T5 =b(T, -T°)T5

However

(e, —€°)Ty = (e, —€°)T5

and therefore

TP -T{T°=T5 - TAT®

This may be solved for the reference temperature to give

T;-T5

TO
TE-TY

This is the same as Eq. 14B.1-2.
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14B.2 Radiation across an annular gap

The system in this problem is very similar that depicted in
Fig. 14.5-1 and described in Eq. 14.5-9. Since all the radiation leaving
the inner surface ("1") of the annulus is directly intercepted by the
outer surface ("2"), we know from the interpretation of F,, after Eq.
14.4-11 that F,, =1. Then

0, - o(T{ -T3)
271-¢ 1 1-e,
+——t
6d; A A

o(T{ -T3)
T 1. 1.1 1

R
ad; A A A, A

o(T{ -T})
1 1(1
RN + —_— — —
ed; A le
Note that if, in Eq. 14.5-9 we had replaced A,F;, by A,F,,, then we
cannot set F,, = 0 in this problem, inasmuch as light leaving surface
"2" is not all intercepted by surface "1". In fact, it is not difficult to
show that F,, = A,/A,. Then if the inner cylindrical surface is only
slightly smaller than the outer cylindrical surface, then F, will be

just slightly smaller than 1, and if the inner cylinder shrinks to a wire,
then F,, will approach zero.
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14B.3 Multiple radiation shields.

(a) Equation 14.5-1 gives the radiant heat flow between successive planes in

the series as . . . .
Qiitr = o(T} - Ti+1) _ o(T? - Ti+1)
’ [l/e; + 1/6i+1 - 1] Ri,i+1

in which
Riipr=[1/ei +1/eiy1 — 1] [A;
Summing the thermal resistances R; ;4 from i =1 to ¢ =n — 1, and equating the

heat flows through all of them, gives

i=n—1

Q Y Riin =0T} —T1)
i=1

whence

0n T-TY
Yy R

(b) The ratio of the radiant heat flow through n identical sheets to that between

two is
Q(n sheets) _ Ry _ 1
Q(2 sheets)  (n—1)R;, n-—1

(c) The ratio of the heat flow with three non-identical sheets to the heat flow
without the middle sheet is

Ry _ [1/er +1/es 1]
Rip+ Ry [l/er+1/ea—1)+[1/ea+1/es—1]

in agreement with the result of Example 14.5-1.
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14B.4 Radiation and conduction through absorbing media
a. We begin by combining Egs. 14.6-5 and 6 to get

d
0=—2 00 _ 1y o0
dz ql maqz

This may be integrated to give
Ing" =-mz+C

The constant of integration may be obtained from the boundary
condition at z=0, so that

g0 =g¢™™*  and (from Eq. 14.6-6) e =m,q{e ™=

Next, use Eq. 14.6-4 to get

4’7 1) p=maz
O=k;z—2—+maq},)e “

Integration twice with respect to z gives

(r)
T(z)=- 1‘1710 .

a

e+ Ciz+C,

Next we apply the boundary conditions that T(0) =T, and T(8)=T;
to get

(r) (r)

T(z)-T, = Zi"k (1 - e"”"‘)i{(T‘s -Ty)- Zzok (1— emad )}%

b. The conductive heat flux is given by Fourier's law:

_ daT _ (r) ,~m,8 TS =T q(()r) —-m,8
g, =-k—=—g{’e +k—5—°—m—a§(1—e )
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For very large values of m,, the first and third terms become
negligibly small, and we are left with

Ty -Ts

Very large m,: q,=—k 5

For very small values of m, we can expand the first and third terms
in a Taylor series and get:

Very small m,: q, =—q{{’(l—m,,z+-~~)—kT“%gT‘s
9 (1-14m s
- 1- —
maé( * M )
T,-T
~—k 0 o)
6

Thus in both limits, the conductive heat flux is virtually unaffected by
the radiation.
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14B.5 Cooling of a black body in vacuo
An energy balance over the black body in the enclosure is

d ar e
— U =Q or pC VE—Aq()

When the Stefan-Boltzmann law is inserted, we get

oC V%—Aa( -T*)

This separable, first-order equation may be integrated as follows

IT dT
T T, T pC V

The integral on the left side may be integrated with the help of an
integral table to give

L
4T3

Therefore the temperature-time relation is

T
Aot

pC,V

T,+T
T,-T

1 T
+-—zarctan =
2T; T, "

1

T,+T
T,-T

T,+T,
T,-

3
+ 2arctan—£ -2 arctanL _44oTyt

In =
T, T, pC,V

—1In|

The left side gives T =T, as t goes to infinity, and T =T, as t goes to
zero.

The left side is dimensionless, and the right side is also, as
can be seen by using the table of notation given on pp. 872 et seq.

= dimensionless
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Q(C°n")/L = hm7rD(To - Ta) = (Numk/D)(ﬂ'D)(T‘) - Ta)
= Numﬂk(To - Ta)
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Q(cond) _ Q(rad) _ Q(conv)
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Q(cond)/L — Q(rad)+(conv)/L
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Use Eq. 14.2-12
e
Chole = ——————— A
hole €+f(1—€) ( )
When Eq. A is solved for f

_ e(l_ehole) B
f ehole(l_e) ®)

Into this we insert the values ¢=0.57 and e, =0.99 and get

0.57(1-0.99)  0.57(0.01) _ 0.0057

f= 0.99(1-0.57) 0.99(0.43) 0.4257

=0.01339 ©)
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