
Solution Manual for Chapter – 13

13A.1 Average heat transfer coefficients.
SOLUTION
The total heat transfer rate is 


The total inside surface area of the tubes is: 


The various temperature differences between the inner tube surfaces and the oil are: 




Insertion of these values into Eqs. 13.1-2,3,4 then gives the heat transfer coefﬁcients: 








13A.2. Heat transfer in laminar tube flow. 
Solution
a.  The Prandtl number, based on the given property values, is
[image: ]
= 8.43

b.  The Reynolds number is
[image: ]


c.  From fig 13.3-2, at L/D = (6.1/0.0254) = 240, we read
[image: ]
[image: ]
Insertion of T0 = 101 °C and Tb1 = 37 °C then gives
 	 Tb2 = 101 - 0.523(101-37) = 67.5 °C

13A.3 Effect of flow rate on exit temperature from a heat exchanger.
SOLUTION:
a.  From the Solution of Problem 13A.2 we ﬁnd that  and that
[image: ]
In which  is the mass flow rate in kg/hr and  is the ordinate of Fig. 13.3-2 at the prevailing Reynolds number. The exit bulk temperature is then:
[image: ]
b.  The total heat flow through the tube wall is
[image: ]
Calculations for (a) and (c) are summarized below: 

	, kg/hr
	
	
	
	, 
	, 
	 (kJ/hr)

	45
	1068
	0.0028
	0.478
	30.6
	67.6
	

	90
	2136
	0.0018
	0.349
	22.3
	59.3
	

	180
	4271
	0.0036
	0.566
	36.2
	73.2
	

	360
	8542
	0.004
	0.605
	38.7
	75.7
	

	720
	17084
	0.0037
	0.576
	36.9
	73.9
	

	1440
	34168
	0.0035
	0.535
	34.24
	71.24
	





13A.4 Local heat transfer coefficient for turbulent forced convection in a tube. 
SOLUTION
Figure 13.3-2 can be used here to find the hloc. There is a need to evaluate the property at film temperature of 60 °C(=(90 +30)/2). However, the viscosity values are required at bulk temperature (30 °C) and at wall temperature (90 °C).
Properties of water at 60 °C:
  = 4179 J/kg·K
𝜌 = 983.3 kg/m3
𝜇 = 4.71 x 10-4 Pa·s
k = 0.654 W/m·°C
Pr = 3.01
𝜇b (Viscosity at 30 °C) = 8.03 x 10-4 Pa·s
𝜇0 (Viscosity at 90 °C) = 3.186 x 10-4 Pa·s
𝜇b /𝜇0  =   2.52
The Reynolds number is
[image: ]

From Fig. 13.3-2, 
[image: ]
Where 
[image: ]
G = 4(5200/3600)/(3.1416 X 0.05208 x 0.05208) = 678.1 kg/m2·s
[image: ]

as the asymptotic value of the local heat transfer coefficient, and
[image: ]
= 4332 (30 – 90)
= –259920 W/m2
as the radial heat flux at the inner wall of the pipe.


13A.5 Heat transfer from condensing vapors. 
SOLUTION:
a. The boundaries of the condensate layer are at  and ; thus the ﬁlm temperature  is . The physical properties at this temperature are well approximated by the values at 93°C, given in Ex. 13.7-1: 





The resulting abscissa for Fig. 13.7-2 is: 
[image: ]

This value falls in the laminar region of Fig. 13.7-2. Extrapolation of the laminar line with a slope of 3/4, consistent with Eq. 13.7-5, gives

The heat transfer rate, neglecting subcooling, is
 [image: ]


A similar result is obtainable from Eq. 13.7-5, once the ﬂow is known to be laminar.
b.  Comparison of Eqs. 13.7-3 and 5 gives, for laminar condensate ﬂow:
[image: ]
Hence, if the tube were horizontal, the heat transfer rate would be 

The assumption of laminar condensate flow on the horizontal tube is clearly reasonable, given the result of (a) and the stall smaller value of  in (b). 

13A.6 Forced-convection heat transfer from an isolated sphere.
SOLUTION
a. The physical properties of air at 1 atm and at film temperature (Tf) of 60 °C are
  = 1007 J/kg·K
𝜌 = 1.059 kg/m3
𝜇 = 2.008 x 10-5 Pa·s
k = 0.02808 W/m °C
Pr = 0.7202
The Reynolds Number is
[image: ]

Substitution of these values into Eq. 13.4-5 then gives
[image: ]

Hence the heat transfer coefficient is

Therefore, the convective heat loss rate is
[image: ]

b.  For using the Eq. (13.4-6), the properties are to be evaluated at T∞ (30 °C) and viscosity at T0 (90 °C) also.
The properties of air at 1 atm and at 30 °C are:
  = 1007 J/kg·K
𝜌 = 1.164 kg/m3
𝜇 = 1.872 × 10-5 Pa·s
k = 0.02588 W/m °C
Pr = 0.7282
𝜇0 = 2.139 × 10-5 Pa·s
	The Reynolds number is

[image: ]


Hence the heat transfer coefficient is


Therefore, the convective heat loss rate is
[image: ]

This result is believed to be more accurate than that found in (a).



13A.7 Free convection heat transfer from an isolated sphere. 
SOLUTION
For the conditions of this problem, the thermal expansion coefﬁcient  is , and the other physical properties are the same as in part (a) of Problem 13A. 6.

The physical properties of air at 1 atm and at film temperature (Tf) of 60°C are
 = 1007 J/kg·K
𝜌 = 1.059 kg/m3
𝜇 = 2.008 x 10-5 Pa·s
k = 0.02808 W/m °C
Pr = 0.7202
(Note that, for the correlations in §13.6,  and  are evaluated at  rather than  for calculation of ). Then 
[image: ]




Eq. 13.6-4 through 13.6-6 gives
[image: ]




Hence

and the convective heat loss rate is
[image: ]




13A.8 Heat loss by free convection from a horizontal pipe immersed in a liquid. 
SOLUTION
The properties of water at 1 atm and a film temperature Tf = 32 °C
 𝜇 = 0.7632 cp = 0.7632 × 10-3 kg/m·s
𝜌 = 995.06 kg/m3 (Interpolated values from the data given)
  =  0.9986 cal/g °C = 4180.94 J/kg·K
k = 0.628 W/m·°C
𝛽 = (1/(273.15 +32)) = 3.277 × 10–3  K–1
Other relevant values are D = 0.1524 m, ΔT = 10 K, and g = 9.81 m/s2. From these data we obtain


The limiting value of GrPr for flow to be laminar is 1 × 109. Considering this condition as laminar and using Eqs. 13.6-4 to 6 and Table 13.6-1 we get


The heat transfer coefficient is then


The rate of heat loss per unit length of the pipe is

The value is 118 times more in comparison to air as a surrounding liquid (Refer Example 13.6.1)


13A.9 The ice-fisherman on Lake Mendota. 
SOLUTION
The surface temperature of the fisherman is unknown, so for the sake of simplicity, we assume that all physical properties of the fluid can be evaluated at the air temperature of .
[image: ]
We assume that the heat capacity is independent of temperature and use the value from Example 13.6-1,
                			   (E)
The thermal conductivity is          			       (F)
The Prandtl and Grashof numbers with  and  are
[image: ] 
Hence:
[image: ]
For the case of a wind velocity of 8.94 m/s,                        (O)
[image: ]
The Nusselt number is obtained from Eq. 13.4-5
[image: ]
[image: ]
Thus, the rate of heat transfer is twice as large in the 8.94 m/s wind. Note that this is an estimate. Perhaps the biggest source of uncertainty is estimating the driving force for free convection as the temperature difference . A better estimate would use an energy balance to estimate the surface temperature, and thus produce a better estimate of T and the material properties. Of course, given that we have assumed the fisherman is a sphere.


[image: ]

13B.2 Local overall heat transfer coefficient. 
SOLUTION
Let 0 and 1 denote the inner and outer surfaces of the tube, and h0 and h1 denote the local heat transfer coefficients on those
surfaces at the cross-section where the oil bulk temperature is 65 °C. According to the development in §10.3, the temperature drops within a cross section have the same ratio as the corresponding resistance terms that sum to 
 

			Eq. (A)

The values of radius, thermal conductivity of pipe (copper) and inside heat transfer coefficient are given below
r1 = 2.5 cm = 0.025 m;     r0 =  2.5 cm - 0.165 cm = 2.335 cm = 0.02335 m
(r1/r0) = 0.934
h0  = 1080 W/m2 °C;    k01 = 394.5 W/m °C
Now to calculate the h1, we use Eq. 13.7.3 and properties are taken from Ex. 13.7.1.
 ;  ; ; 

[image: ]

Substituting all values in Eq. (A), 


Solving for T1 gives 99.17285 °C.
Now we can find the inner wall temperature (T0), by following equation

Solving for temperature drop through the tube wall gives the value of 0.15 °C. Thus, the thermal resistances of the tube wall and condensate film are unimportant here, as assumed in Problem 13A.1. 


13B.3 The hot-wire anemometer.
SOLUTION:
a.  The physical properties of interest at  and a film temperature of 168°C (335°F) are: 



 (from equation 9.3-15)
 (from equation 8.3-16)
Also the Reynolds number is 
Then Eq. 13.4-8 gives
[image: ]


Then we get the heat transfer coefficient from 

Finally, the heat loss from the wire is 
[image: ]


b. For an approach velocity of 90 m/s, Re = 743. Equation 13.4-8 gives , 
and . This is very close to  from King's relation. 

[image: ]
[image: ]
[image: ]
[image: ]

Equation 13.1-14 can be written as:
[image: ]

13B.6 Heat loss by free convection from a pipe. 
SOLUTION
The properties of air at 1 atm and a film temperature Tf = 87 °C
 𝜇 = 0.02126 cp = 0.02126 × 10–3 kg/m s
𝜌 = 0.9801 kg/m3
  =  1008 J/kg·K
k = 0.03 W/m K
𝛽 = (1/(273.15 +87)) = 2.7766 × 10–3  K–1

The properties of air at 1 atm and a film temperature Tf = 32 °C
 𝜇 = 0.0190 cp = 0.019 × 10–3 kg/m·s
𝜌 = 1.158 kg/m3
  =  1009 J/kg·K
k = 0.0263 W/m·K
𝛽 = (1/(273.15 + 32)) = 3.277 × 10–3  K–1

Since the temperature difference is the same in both the original problem (of Example 13.6-1) and the new problem (Problem 13B.6), it suffices to determine the ratio , where the accent indicates the result for the “new” problem. Because the value of the heat-transfer coefficient is dominated by that given by the thin boundary-layer estimate, we focus only on that contribution here. Next, we calculate the ratio of the heat-transfer coefficients:
[image: ]


Thus, in the “new” problem, the heat-transfer rate is only slightly greater than in the original problem.


image3.png
A 2/3 —0.14
(szme)( D j[(r’”] (ﬂb) =0.0028
Ho

(T,-T, ) VAL K
Now, for uniform T,

(To—T) :]n[To—Tm]

(To - Tb )1,. To - sz




image4.png
Hence, for this problem

T() b2

m[ﬂ):(0.0028)(4x240)(8.43)’2/3(1) =0.649

so that

(Ty=Ty)/(Ty =Ty ) = =0.523




image5.png
To — Tz exp (—0.649Y

Ty — T 0.0028 ) exp(~232Y)




image6.png
Tyo = Ty + (T() — Tbl) [1 — exp(—232Y)]




image7.png
Q= wép(Tb2 — Th1)




image8.png
AN\ ~014
Z’i Cort [&] —0.0028
C,G k Ho




image9.png
G= 4?0/ 7D?




image10.png
é U -2/3 4014
T, =0.0028C,G| 22| |
! k Ho




image11.png
qr‘,:R ==y =l (T, -T;)




image12.png
k.p2/3g1/3(Td _ T())L
u5/3AfIvap




image13.png
Q =7DI'AH,,,




image14.png
Quor _ 0.725( L
Qvert. 0943 (Dj




image15.png
Re

_Dop




image16.png
Nu,, =2 + 0.60 Re'/2Pr'/




image17.png
— 2
Q=7D’L,(T,-T,)




image18.png
Nu,, =2 + (04Re'/2 + 0.05Re1/3)Pr°4(“")m
Mo




image19.png
G
1P
r
[D3p
2
ugﬂ
2 ATJ[
¢
pH




image20.png
0.878 x 0.671

1/4
7 (0.492) Pryo/ieyers ¢ GTF)

lam __
Nu, " =




image21.png
- 2
Q 7I'D hm(To - Too)




image22.png
In calm weather, heat transfer is by free convection. The values
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13B.1 Limiting local Nusselt numbers for plug flow with constant
heat flux
(Note: Problem  9B.9-1 should be worked prior do doing this
problem)

a. For circular tubes with plug flow, the dimensionless
temperature distribution, the dimensionless wall temperature, and
the dimensionless bulk temperature are obtainable from Eq. 9B.9-1
on p. 325:

oz
2
R

= k(T — Tl)
R

©

=20+182-1 (where {:éand ¢= )

0, =0l =20+1

_ s®vess

.[l” &dg B ZJ‘;@édg = Zj;(2§+%52 —%)fdg =2¢
b0

b

Then the difference between the wall temperature and the bulk
temperature is

o _KTy-T,) 1
€0 -6, = WR 4

and the Nusselt number is

hD__4(2R) _

Nu== “HT,o-1,) "

4-2=8

in agreement with Eq. (J) on p. 430. Note that, by convention, the
Nusselt number for tubes is defined using the diameter rather than
the radius, and this definition introduces the factor of 2.

b. For the plug flow in a slit of width 2B, we have for the
dimensionless temperature, wall temperature, and bulk tempera-
ture, all obtainable from the results of part (b) of Problem 9B.9:
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13B.4 Dimensional analysis.

(a) The left-hand member of Eq. 13B.4-1 is expressible in terms of integrals of
the dimensionless product function v, T as follows:

= = (v, T|;=0) — (v, T Z:L/D) (A)
Here the angle brackets denote cross-sectional averages as in Eqs.  9.9-32 and 33,
whereas overlines denote long-term time averages. Thus the averages on the right
depend only on Re, Pr, and L/D, when viscous dissipation and radiant energy ab-
sorption and emission are neglected in the energy equation. With these assumptions,
and the further neglect of axial heat conduction, the quotient (Ty2 —T41)/(To — To1)
is equal to the time-average of Q/(wép(To — Ty).

(b) The heat transfer coefficients h, and hj, each differ from h; only by the
ratio of the corresponding AT definitions given in §13.1. But AT, and ATj, are
expressible in terms of ATy and ATy, so their ratios depend only on Re, Pr, and
L/D according to the result in (a). Hence, Nu, and Nuy, are functions of the same
arguments as Nuj, confirming Eqgs. 13.3-12 and 13.

Equation 13.3-14 requires extension of Eq. A to a variable upper limit z, giving

Tb(z) - Tb1

T Ty =~ ° function of (Re,Pr,z) (B)

Then, according to Eq. 13.1-18,

hocD  wC, din(Ty — Ty)
k 7Dk d(z/D)

(393 e

dln[(To — Tb)/(To — To)]
dz

=4 RePr

Combining this result with Eq. B, we get (for this special case of uniform wall
temperature in the heat-exchange section),

Nujoe = Nujoe (Re, Pr, (%))

in agreement with Eq. 13.3-14.
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13B.5 Relation between h,. and h;,

a. We relate the rate of heat transfer across the increment of
surface #Ddz to the decrease in the internal energy within the
volume element 1 zD*:

hioe (7Ddz)(T, - Ty ) = ~(1 2D?)pC, (v)dT

This is really an application of the d-form_of-the energy balance
discussed and given specifically inIt i;g Zlear from
this equation that the kinetic and potential eneéfgy changes are being
neglected, and thas been multiplied through by w.

The above equation may now be integrated over a length L of
the tube to get, with T, = a + T,
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b. Equation 13.T-T4 can be written as
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from which Eq. 13B.5-3 follows at once:
1L
hln = Z,[o hlocdZ

Then, differentiating the integral in Eq. 13B.5-3 using the
Leibniz formula in Eq. C.3-2, we get .

dn, 1 1
T (Lhy )+ =Py,
dL LZ( i) Lo,
or

dh,,
Moel,., =M +L dli

which is Eq. 13B.5-4
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