
Solution Manual for Chapter – 12

12A.1 Wall heat flux for turbulent flow in tubes (approximate)
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12A.2 Wall of heat flux for turbulent flow in tubes
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d.	Substituting the values of f and α(+) into Eq. 12.4-16

			

					(12.4-16)





	




Now, 



	








	We know

			 (See the entry in Table 14.2-1)

For plug flow

		



				(1)



Now, substituting the values back in Eq. (1), we have




Again, 

			 (See the entry in Table 14.2-1)

12B.1 Constant wall heat flux for turbulent flow between two parallel walls
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Then we get the dimensionless temperature difference:

8,0, =G, g[1+1(§2> 7a] 4% -Cog I ¢[I§ v (;(),) /a]dE]édé

Then we exchange the order of integration to get the second line of
Eq.12.4-15:

0,-6, = cojo——%dg

5[1+ a/a
s 1€
—%)JO—-——E[H((Q) )][J ozt~ [] pcdg g
1) Cy I(€)

5[1+ a(’)/a)]dé B 1(1)'[0 §[1+

=G f! T <t>/a]d§_c°j‘:md§

The first two terms cancel, and the third term gives Eq. 12.4-16, when
the expression for C, in Eq.12.4-14 is used.

c. It is not necessary to find the constant C, in this problem
because we are interested only in the dimensionless temperature
difference. In obtaining this difference, the integration constant C,
cancels out. If, however, we want to find the complete temperature
profile, then we need an expression for C,.
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12C.1 Constant wall heat flux for turbulent flow between two
parallel walls
a. For slit flow, the analog of Eq. 12.4-6 is

a@) P (Ha“’]a@
ag S a ) IE

with the boundary conditions 98/d¢ =0 at £=0, 9B/dE=1at £=1,
and © =0 at {=0. Here the dimensionless variables are defined as:

T-T,. 7, _x _ z
q0B/k’ 0= T, max =5 ¢ PC, T, B2 [k
We now try a solution of the form 0(&, ) = Cy{ +¥(&), which should

be asymptotically correct at distances far down the tube. This leads
then directly to the following differential equation

d o) d¥
el [1+ % )]

0=

A first integration then gives
a®)dy ¢
(1+7JE§—-COJ $(E)dE +C, =CoI(£)

where we have introduced the abbreviation J(& Ig ( )d§ and the

constant of integration has been set equal to zero since d0/d& =0 at t
he tube axis. Then, since 99/9¢ =1 and o =0 at the tube wall, we
find that C, =1/J(1). Thus the dimensionless temperature profile is

J(€)
°1+(a®/a)

in which it is understood that a® is a function of €. Next we form

0(£,0)=Cl+ Co dE*’Cz
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Next we exchange the order of integration in the numerator and
make use of the definition of | in the denominator to find

JE) - ¢ a J(E)
°1+(a(‘)/a)d§ I(l)j°1+(a(‘)/a)

0,-0,=C,

[zo(£)ae]aE

The inner integral of the second term may be written as J(1)- J(E),
and the J(1) contribution to the second term of ©,-0, exactly
cancels the first term. The final expression for ©, — ©, is thus

_ 1 [JOF
@0 eb [](1)]2 01+( (l)/a) é

Then, since 4,B/k(Ty - T,)=1/(®, - ©,), Eq. 12C.1-1 follows.
b. For laminar Newtonian flow, ¢ =1- &2 and a® =0; then

](5):]‘5(1— Ez)d}f= £-1£% and J(1)= 2. Furthermore

L@ e =[(&2-384 +3&°)at = £

Hence, finally, for laminar Newtonian flow (using the mean
hydraulic radius in the expression for the Nusselt number)

7(4B) 140

Nu= T, —1,) " 17

(see the entry in Table 13.2-2)

For plug flow, J(¢)= [yd€ =&, J(1)=1, and [[[J(§)f d¢ = [;£%d¢ =3.
Hence we finally get Nu = 12, which is the entry in Table 13.2-2.
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12B.1 Wall heat flux for turbulent flow in tubes (approximate)

The integral in Eq. 12.3-6 can be evaluated by making a
change of variable. Let

Prw( ye. ): x
14.5v

Then Eq. 12.3-6 becomes (after setting the upper limit equal to
infinity):

-1
s 0s - dx =
o Pr (14.5v) 0 14+x° _k(TO TR)

The integral may be found in a table of integrals, where we find

o  dx /4 T 2
s =7

1+x% 3sin%7t_ 3(%\6)_ 33

Hence Eq.12.3-6 becomes

-1
_ V. 2n =
foPr 1/3(14.5‘/) 375 = H(To=Tx)

Then the dimensionless wall heat flux is

gD 3\/5( .

- 0
K(T,-Tg) 27 14.5v)Pr P

This now has to be written in terms of dimensionless groups:

%D 33 [v. (D<v’>p)Prl/3— 33 [
K(To-Tz) 2n(14.5)\ (v,)\ n " 27(14.5)\2

where Eq. 6.1-4a has been used in order to introduce the friction
factor. Thus we have obtained Eq.12.3-7.
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12B.2 Wall heat flux for turbulent flow in tubes
a. The assumptions are, for the asymptotic solution discussed
here (the asymptotic form of the solution is introduced in Eq. 12.4-
10):
i.  Fully developed turbulent flow
ii.  Axial heat conduction is presumed to be negligible
with respect to axial heat convection
iii.  The turbulent Prandtl number can be taken to be
unity (in developing Eq.12.4-20)
iv.  The modified van Driest equaion of Eq. 5.4-7 is
used to describe the turbulent velocity
profile (in development of Eq. 12.4-20)
b. To get the constant C, in Eq. 12.4-10, we use B. C. 2. First

we have to get the derivative d0/d¢ using the Leibniz formula

e 1®)
0+Go §[1+(a(‘)/a)]

Then at £=1 (the tube wall), the turbulent thermal diffusivity
vanishes, and the dimensionless temperature gradient is unity, so
that we get the result in Eq. 12.4-14:

d—ez
g

_c 1) 1T
1=C, Ti+0] or C,=[I(1)]

The dimensionless wall temperature is obtained from setting
& =1in Eq. 12.4-12 (and setting C, =0)

90=c0§+c0j;_Ld§+c2

e+ (]

The dimensionless bulk temperature is obtained using the definition
in Eq. 9.9-33, starting with Eq. 12.4-12 (and setting C, =0):
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