
 Manual for Chapter – 11

11A.1 Unsteady-state heat conduction in an iron sphere. 
a. The thermal diffusivity of the sphere is given by Eq. 8.1-8:



b. The center temperature is to be 53°C; hence



Then, from Fig. 12.1-3, , and 



c. By equating the dimensionless times, we get

   or 

d. The partial differential equation from which Fig. 11.3-3 was constructed is 








11A.2 Comparison of the two slabs for short times. 
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11A.4. Quenching of a steel billet. 
The thermal diffusivity of the steel billet is 

The dimensionless time is then

From Fig. 11.1-2, the dimensionless centre-line temperature is about 0.31. Therefore

Tcentre = 0.31 (T1 -T0 ) + T0   = 0.31 (95 - 535) + 535 ≈ 399 °C
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The conversion factor was taken from Table F.3-5.
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11B.7 Timetable for roasting turkey. 
a.	One dimensional diffusion equation for the temperature at any point x and instant time t inside the turkey. 
     (Eq. 1)
Where is the thermal diffusivity of the turkey.
Boundary and initial conditions: 
     (Eq. 2)
       (Eq. 3)
      (Eq. 4)
Write in terms of dimensionless terms: 
; ;  ,    (Eq. 5)
In the dimensionless form Eq. 1 becomes:  
    (Eq. 6)
And the boundary conditions in dimensionless form: 
        (Eq. 7)
       (Eq. 8)
       (Eq. 9)
The to Eq. 6 with boundary conditions Eq 7-9 will be of the form: 

This is similar to the analysis in the example 11.1-4 with an arbitrary shape of the solid. 
b.	The is for the form: 
Given that the geometric ratios are of same and the temperature distribution  is also same: 
Then we have that dimensionless time is same for both turkeys:
        (Eq.10)
If the turkeys are identical then the thermal diffusivity is same:
          (Eq.11)
Therefore, we have:
            (Eq.12)
The mass of the turkey is
       (Eq.13)
If we assume the turkey is of same density then: 
         (Eq.14)
We assume that the volume of the turkey is proportional to cube of characteristic length then:
 (Eq.14)
Therefore from Eq. 12 we get:
    (Eq.15)
	Table 1

	Mass of Turkey (kg)
	Time required per unit mass (min/kg)
	Time required (min)

	2.7-4.5
	44-55
	118.8-247.5

	4.5-7.26
	40-44
	180-319.44

	8.16-11.34
	33-40
	269.28-453.6


Predicted values assuming 2.7 kg require 118.8 minutes to cook are shown in table 2. The predicted values from dimensionless analysis shows agreement with the empirical cooking data.
	Table 2

	Mass of Turkey (kg)
	Time required (kg)

	2.7
	118.8

	4
	154.4

	6
	202.3

	8
	245

	10
	284.38

	11
	303
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According to Figure 11.1-1, at at/b* =0.01and y/b= 0.8

T-T,
TI_TO

= 0.15

where y is the distance from the mid-plane of the slab.

Next we use Fig. 4.1-2, which can be interpreted as a plot of
(T-T,)/(T, -T,) vs y’/\4at, where y’=b-y is the distance from
the wall. We then get

Hence the use of the combination of variables solution introduces an
error of about 6.25% maller errors occur at smaller values of the

dimensionless time at/b?.
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11A.3 Bonding with a thermosetting adhesive
The dimensionless temperature at the time of bonding is

T —T, 170-30 _

S 0 =0.70
T,-T, 230-30

This occurs very nearly at a dimensionless temperature at/b’ =0.6.
Hence the time required is

2 2
- (0.6)[%) - (0.6)(%3) ~70s
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11A.5 Measurement of thermal diffusivity from amplitude of
temperature oscillations

a. From Eq. 11.1-40, we see that the amplitude of the
temperature oscillations is the following function of y:

A(y)= q"( eXP[ \F yj

Then the ratio of amplitudes at two different distances from the
planey =0is

2_1 = exp(—\/%(yl - yz;))

The logarithm of this expression is

A ) [
Inl 21| [ Ly —y )= /_ _
(AZJ 2a(yl Y)=+ Za(y2 ;)
This can be solved for the thermal diffusivity to obtain
2 2 2
a=2[ Y2 =¥ ) =27tV( Y2—= Y J =7I\{ Yo— W% )
2{In(A,/A,) 2 {In(4,/4,) In(4,/A,)

where v is the frequency in cycles per second.
b. Inserting the numerical values given:

6.15

- (3.1416)(0. ooao)( b

) =0.110 cm?/s
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11A.6 Forced convection from a sphere in creeping flow
a. The dimensions of the quantities in Eq. 11.4-34 can be
obtained from the table on pp. 872-876, thus:

ML ML
Q=l=z~ DL TEEIT K=l
Re[=] dimensionless Pr[=] dimensionless

To check for dimensional consistency:

[=j-7. ML

BT

MI?
3

b. We now write Eq. 11.4-34 in terms of the Péclet number:
A \Y3
(2 K\ 37)* | Dv.pC
Q—(nD )(To _T“)[B]{Zml‘(%) k .
PN
) (3" | Do.eC,
= (7L'D)(T0 -T, )k[27/3_l"() %

In this form, the viscosity does not appear in the expression. We now
fill in the numerical values, using c.g.s. units throughout:

_ 4 4.462 (0.1)(1.0)(0.9)(0.45)\ **
Q=(0.1)(50)(3x10 )[(5.04)(0.89297) 3x10° )

=0.0240 cal/s
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11B.1 Measurement of thermal diffusivity in an unsteady-state
experiment

We first tabulate the midplane temperatures as a function of
time, and then convert them to the dimensionless midplane
temperatures. Having done this, we consult Figure 11.1-1. We find
the value of the dimensionless midplane temperature on the ordinate

of the graph, and from this we can read off the value of at/b®. This
quantity then can be multiplied by b* and divided by ¢ to get the

thermal diffusivity. The calculations may be summarized as follows
(working to two significant figures):

T -T,

t TmidPlane ’_mi—;_—ufli_%_ (Xt/ b? o

0 20.0 0

120 244 0.220 0.20 1.50x1073
240 305 0.525 0.40 1.50x1073
360 342 0.710 0.60 1.50%x107
480 365 0.825 0.80 1.50%x1073
600  37.8 0.890 1.00 1.50x1073

Thus, the experimental data give us @ =1.50x107 cm? /s.
Next, the thermal conductivity can be obtained as follows:

k=apC, =(1.50x10" cm? /s)(1.50 g / cm®)(0.365 cal / g - C)
=8.21x10™ cal /s-cm-C

or

k =(8.21x107*)(2.418 x10?) = 0.20 Btu / hr- ft-F

The conversion factor was taken from Tabl Please check
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11B.2 Two-dimensional forced convection with a line heat source
a. The energy equation simplifies to

2
pC,v ar_ ka—T where v, =7, a constant

*ox o dy?

The boundary conditions have the following meanings:

Eq. 11B.2-1: Far from the wire, the temperature of the

fluid is unchanged from its value, T, for x <0

Eq. 11B.2-2: The approaching fluid is all at the temperature

. T,--that is, there is no heat conduction upstream
Eq. 11B.2-3: The entering into the fluid from the wire must
appear somewhere in the cross-section
In addition, we need a statement that T(x,y)=T(x,-y)--that is,
symmetry about the plane y =0, which contains the wire.

b. The postulated solution in Eq. 11B.2-4 states that the
temperature profile at any value of x will be geometrically similar to
the profile at any other value of x. When this expression for T is
inserted into Eq. 11B.2-3 we get:

pC,o0 [ f(x)g(m]| 8(x)dn =Q/L

When the integral on 7 is evaluated, it is found that f(x)6(x)=C;, a
constant.

When the expression in Eq. 11B.2-4 is inserted into the energy
equation, we get

vy 0 9?

2[f(x)g(m)]=5=[f(x)g(m)], or

oot sl stlato ) o

v[_ 145 _ndgds|_ 1d’g 1
o| 57 dx8 57 dndx | st o°

Multiplication by §° then gives Eq. 11B.2-5.
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¢. When the quantity in brackets in Eq. 11B.2-5 is set equal to
2, we get a first-order separable equation for §(x)--the thermal
boundary-layer thickness--which is integrated from 0 to x to give
&(x) =4ax/v, . The main reason for setting the bracketed quantity
equal to 2 is that the solution to the equation for g(n) comes out to be
a little simpler.

d. The equation for g(n) can be written as

which has the solution
ag

2 =-2n¢+C

n ng+L,

Since g(n) is symmetric about 71=0, we know that dg/dn=0 at
n=0; therefore, this last equation tells us that C,. A further
integration leads to a Gaussian function

8= Cpe™
We do not evaluate C; but instead "absorb" into the constant C;.

e. We can now evaluate C, by substituting the postulated
temperature profile into Eq. 12B.2-3 to get

pCu,Ci["e(mdn=Q/L  or pC,u,C, [Temdn=Q/L

which gives
c =L _
' oG,

Which then completes the determination of the temperature
distribution in the wake of the wire.
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11B.3 Heating of a wall (constant heat flux)
a. The equation to be solved for g, (y,t) is

aq, J,

ot _aayz

This is the same mathematical problem that is solved in Example
11.1-1, so that we can write down at once

with ¢,(y,0)=0, q,(0,t) =4y, and g, (e,t)=0

Ty _ 2 =

—u?
—ﬁ y/me du

To get the temperature we use Eq. 11.1-39

I

=0 TG} o e dudy = B EGR [T [ e v
=%°%\/4_mj;me'"z[u—\/f_w}du

:%"( 4—2—‘5 ;We‘“zudu—% ;We'“zdu]

When the first integral is evaluated, we get Eq. 11B.3-1. In the above,
to get the second line, we made a change of variables and then
interchanged the order of integration; in the third line, we performed
the inner integration.

b. Some intermediate steps in showing that the partial
differential equation is satisfied: We write k(T - T,)/q, = F—G. Then

= \/21. }_}_Ei eV [t aazf: 1 yz_\/; oVt
nt \Vdnot t dy dmat t it
96 _ / 1y o v/t a¢92C2;= _2\/34_ [1 ¥, e
ot 4mot t dy nt Ndmot t
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11B.4 Heat transfer from a wall to a falling film (short contact time
limit)
a. From Eq. 2.2-18, we get

0, = 0, 1= (/6)" | = 0| 1= (1- (/)
= [ 1= 1+ 2(y/8) + (4/8)" | > 20, e (/)

this last expression is good in the vicinity of the wall, where the
quadratic term can be neglected.

b. Equation 11B.4-2 presupposes that the heat conduction in
the z direction can be neglected relative to the heat convection in the
z direction. In addition, laminar, nonrippling flow is assumed.

c. The fictitious boundary condition at an infinite distance
from the wall may be used instead of the boundary condition at a
distance § from the wall, since for short contact times the fluid is
heated over a very short distance y. Therefore the inifinite boundary
condition can be expected to be adequate.

d. Equation 11B.4-3 can be written as y(90/dz) = ﬁ(32®/¢9y2).

Next we have to convert the derivatives to derivatives with respect
to the dimensionless variable 7:

0 _dedn_de ( 1)
dz  dn oz dn»’(/9ﬂz

90 _doan_de 1 82®=d[d® 1 J3ﬂ=d2@( 1 )2
dy dndy dnyoBz’ a7’ dn\dn3oPz)ay  dn’\ 3Pz

When these relations are substituted into the partial differential
equation and use is made of the defining equation for n we get Eq.
11B.4-7.

e. When we set d®/dn =p, we get dp/dn+3n°p=0, which is
first-order and separable, and the solution is given in the book. The
next integration gives

0= [ e™dn+C,
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11B.5 Temperature in a slab with heat production

a. This problem is discussed on pp. 130-131 of the 2nd Edition
of Carslaw and Jaeger. The solution in dimensionless form can be
obtained from Eq. (7) on p. 130. We must first determine the
correspondence between their symbols and ours:

C&] I K v x/1 K k1> A,
k ot

BS&L b - =¥ = ==

S& k T-T, n p o o, =13 So

Therefore the temperature rise as a function of position and time is

kK(T-Ty) 1 2 o (A" (et
— = 1-n*-4Y — 2 _cos(n+1)an-e V"2
Seb? 2 Z:o(n + %)3 n? (n+3)

b, The center-plane temperature is obtained by setting 7n
equal to zero. The maximum of the center-plane temperature is then

Sob*

Toox =T+
o7 2k

max

¢. According to the figure on p. 131 in Carslaw and Jaeger,
90% of the total temperature rise occurs at about 7=1, that is, at

about t =b*/a.
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11B.6 Forced convection in slow flow across a cylinder
a. First we have to determine the velocity component v,

from Eq. 11B.6-1 (here we let £ =7/R and measure 6 downstream
from the stagnation locus):

_ 9y _ov_sing Y
vo=5r= 00 [(Zlnf 1)+2 éz}

Then let £ =1+ n and, for small 7,, introduce the Taylor expansions

Iné=(&-1)+=n+--=y/R+- and -1/E* =-1+2n+---. Then we
may write

0. = v, sind
* 25

2v_sin@
]NTy By

[4 N+
Therefore, §=2v,_5sin0/SR.

b. We identify the boundary-layer coordinates as x=6,
y=7r-R, and z=z. Then we recognize that &, =R and set h, =1.

Therefore we can get the heat loss from a length L of the cylinder as
follows, starting from Eq. 11.4-31:

o e mal”

2a"°r(4) (SR

_ 1/3]((’110 T. )L 2v,, Bp

- 2a"°r(%) (SR) (B3 H)7R

~ I/S(B( , ))2/3 k\(Dv. v 3
- 27:1“(4);1/3 (”DL)(T"—T““)(B)( v 'a)

3Y3 (B(4 4 )2/3

T()“(nDL)(TO T, )( % )(Respr)us

Comparison of this result with the solution to part (b) given in the
text allows the constant C to be evaluated.

c. The boundary-layer thickness can be obtained from Eq.
11.4-29 as follows:
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RePr) +/sinf
95
- ( Re Pr) f (6)

At the separation locus, 8 = 7, the integral is finite (according to Eq.
11B.6-2) and the denominator in fis zero, so that f is infinite. Near
the stagnatlon locus, 6=0, the numerator and denominator of f may
be expanded in Taylor series to give:

_ (J. )1/3 ) (19\[‘( _%92 "')d@)vg
Je 193 Jo(1- 507+
=%(1+%02 )(2 o2 - 12 97/2 )1/3

Then in the limit as 6 — 0, this gives the stagnation value
13
f=(3)

Numerical integration gives for 6 =1r

f=1.1981

To get the answers given in the book, we have to recognize that the
theta in the problem is being measured from the stagnation point at
0 = & to the separation point at 6 =0.

Note that for this flow, just as for the flow around the
sphere, the boundary layer thickness increases through finite values
to an infinite value at the separation locus.

[Note: 1@» Abramowitz and Stegun (NBS, Applied Math
Series, 55) 15 a\convenient formula from which the integral from zero

to 17 can belcalculated in terms of gamma functions, which are
tabulated.]

Please check
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11B.8 Non-Newtonian heat transfer with constant wall heat flux
(asymptotic solution for small axial distances)
For Newtonian fluids, Example 11.2-2, we wrote

v, = vz,max[l —(%Jz}: vz,max[l—(l—(%)j}
8 b (2

where Egs. 2.3-18 and 19 have been used, as well as the definition
y=R-r.
The analogous procedure for power-law fluids gives

S [1— ( % )(l/nm}: vz,ma{l— ( B %)(vn)ﬂ]
:vz,mx[l_u(%ﬂ)(%)_%(5“2@(%) ]
"”;:X%*EE%)":((?O s ) (1/rg+1(%”)(%)
(P ) ()=

This gives the formula for the v, that has to be used for power-law
fluids. The quantity v, , with dimensions of velocity, appears only in
the dimensionless parameter A.

Yo

RIS
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The boundary condition at n=0 gives C,=1. The boundary
condition at 7= oo, gives

1

Cimm——
! j': e R

And the complete solution (in dimensionless form) is

Ine—n an J“’" -7 df] J‘ﬂe—n dam J'e 7 dﬂ

o= j‘” e dn [Fe™an (%)

The integral in the numerator cannot be integrated analytically.

f. The local wall heat flux (i.e., at any position z down the
wall) is

al =kl o] Ty k T,
Viy=0 8yy=0 anl,_, 9Bz (%) 398z

In taking the derivative, the Leibniz formula was used. Finally the
average heat flux at the wall is

k To=Ty 1t s, 3 k T,-T,

=-1—ILq | dz =
y=0 L7 Vly=0 1"(%) 398 L

This is the result that is given in Eq. 11B.4-9.

qy,avg
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11C.1 Product solutions for unsteady heat conduction in solids
a. We begin by defining a dimensionless temperature
difference by

T,-T(x,y,z,t)
T,-T,

A=

in which T is the initial temperature of the solid rectangular

parallelepiped, and T, is the imposed temperature on the surfaces of

the solid. Then the 3-dimensional heat conduction equation for the
solid is

n_ . A . 3*A N A
ot P T

If we now postulate a product solution
A(x,y,z,t)= X(x,t)Y(y,4)Z(z,1)

then we get

AXYZ)  [d*(XYZ) K 9*(XYZ) K J*(XYZ)
ot ‘“( o o J

Division by XYZ then gives

1 IXYZ) 19°X  19*Y  13°Z
B I IRvICw B
XYZ ot Xox> Yoy Zo

When the product on the left side is differentiated we get

19X 19Y 19Z_ (19X 1Y 192
+= =Sttt
Xot Yo zZat AXo2 Yo Zo

The first term on the left is a function of x and ¢, as is the first term on
the right. Similarly, the functional dependences of the second and
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third terms are the same. Therefore we postulate that these pairs of
terms can be equated to give:

X 9*X Ay %Y oz  3°Z
o ; ; o

a Yt a Y a Y

That is, we get three one-dimensional heat-conduction equations.
These can be solved according to the method of separation of
variables given in Ex. 11.1-2, and all of them have the same initial
conditions, and the same kinds of boundary conditions. Therefore,
when we combine the three solutions in the product form above we
get

A= (2 3 ()" o) w2 cos(m + %)nx/a)
m=0

o

2 i () () s cos(n + %)ny/bJ

n
(_1)p v(}ﬂ»%)z nzm/c2

Y

cos(p + %)n:z/c)

A= 820,,%,2,(771 +1)(n+1)(p+1)

[cos(m +%)mx/allcos(n + 1) my/bllcos(p + 1) 7 z/c]
—I:(m+%)2 /a2 +(n+%)2/b2 +(p+%)z/c2 ]nzat
-e
This can be substituted into the differential equation to verify that the
latter can indeed be satisfied. Also, the satisfaction of the boundary
and initial conditions can be verified.
b . This and many other interesting and important product

solutions are discussed in Carslaw and Jaeger on pp. 33, 184, and
227.
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11C.2 Heating of a semi-infinite slab with a variable thermal
conductivity
a. The heat conduction equation is, for variable k,

~ dT d(,dT A 00O
T e Rrdfemd) o

00 2%0 dJ 20
a :“"[ayz ”’@(%J]

In order to use Eq. 11C.2-2, we need to convert the derivatives:

90 _dd 9 _ dd)(_ y dé) _ dd)(_ 1 d6)

o dnot dn\ &% dt) dn\ 5t
99 _dodn_dv1 82(9:112@1
dy dndy dné o’ dn* §°

b. We now substitute the above derivatives into the heat
conduction equation to get (after multiplication by &?)

_dd)( 6d6) d(do +pO Ao
dn dt Odn dn dn

When this is integrated over 7 from 0 to 1, we get

d5 1d dd
® |dn-S§ D d
J[ ]" i °°dn[dn P dn] "

Performing the integrations we finally end up with

-nd| +_[;<I>dn~6d6 =a (dq)

= D
dt~ °Ldn F dnJ

which is equivalent to Egs. 11C.2-3 to 5.
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c. We now use ®=1-2n+17°% which is a good choice for

the approximate temperature profile, since it gives ®(0)=1,
®(1)=0, and ®’(1) =0 in agreement with our intuition.
We then get M and N by substitution into Eqs. 11C.2-4 and 5:

M=j;®dn=f;(1—%n+%

do , do\l
ve(Gpemndt) [zeam)en-gne i3]

=3(1+8)

=
w
~
QU
=
1]
0|

This leads to the differential equation for the boundary layer
thickness:

dé
102 31+ p)at

which when integrated gives
8 =+/8(1+B) oot

The time-dependent temperature distribution is then

3
T- TO =1- 2 Y + l Yy

T,-T, 8L B(1+B)axet | 2 +/8(1+B)aot
The heat flux at y = 0 is finally

| _ 9T _ KT -Ty)dd| 3 KTy -Ty)
W= 3|, T 60 dnl, 2B Bact

in which k is given by Eq. 11C.2-1.
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11C.3 Heat conduction with phase change (the Neumann-Stefan
problem)

a. Using the definition of the dimensionless temperature
differences in Eqs. 11C.3-1 and 2, we may write the heat conduction
equations for the solid and liquid phases as follows:

) CAC) - ) FAC)
Solid: Tts = 8225 quuld: a—i‘L = a#
The initial and boundary conditions are:

I.C. at t=0, 0,=1
B.C. 1 at z=0, 0, =0
B.C. 2 at z=oo, 0,=1
B.C.3 at z=Z(t), 0,=0,=0,
AH
B.C.4& atz=Z(t), ks _ 0L _ PAYy dZ

E> dz  T,-T, dt

b. The assumed forms for the solution are chosen because of
their similarity to other one-dimensional heat-flow problems in a
semi-infinite region:

. z
Solid: (‘35=C1+C2erf\/4_odL
- z z
Liquid: @,_=C3+C4erfm=(c3+C4)—C4(1—erfm)
z
=(C3+C4)—C4erfcm

The last form for the liquid-phase temperature equation will turn out
to be somewhat more convenient to use.

¢. When we apply B. C. 1, we get C, = 0. Using B. C. 2, we get
C;+C, =1; we not that the initial condition is automatically
satisfied. Then B. C. 3 gives

Z(t) Z(t)
y el LA £ =0
C,er ol C,erfc aaf - On
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The only way that this equation can be satisfied, is if Z(t)e<~/t. We

elect to write, then, Z(t)=A+/4at where A is a dimensionless
constant that has yet to be determined.
Finally we apply B. C. 4 to get

2 _p 1 2w -1
kczﬁe Z/4M(WJ_k(_C4)ﬁe Z t(—zk«—;)

PAH 1

= ANdo——

Ti-T, " Ot

or

" PAH Aom .

ke (- )= *)
1740

Next we apply that part of B. C. 3 that deals with the
dimensionless melting temperature:

CyerfA =0, and 1-Cjerfcd =0,,
whence
<] 1-©
C, - - m_ _ m *%
2=C erfA  erfcd ")

Combining (*) and (**) and rearranging, we get

e, 1-0,

_ +A2
erfA  erfcA =rhke

This gives A in terms of A and ©,,. Then we get for the temperature

erf(z/4at)
erfA

erfc(z/40t)

Solid: ©5=0,, orfch

; Liquid: ®L=1—(1—®m)

Finally, we have Z(t)=A+4at, where A is now a known function of
Aand ©,,.
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11C.4 Viscous heating in oscillatory flow
a. The starting point for this problem is Eq. 4.1-44, and the
development up to and including Eq. 4.1-50 can be taken over here.

B.C. 1 is also valid, but now B.C. 2 must read: at y =b, v° =0. When
Eqg. 4.1-50 is solved for these boundary conditions, we get

v°(€) _ sinhe(1-€)
(N sinhc

where ¢ =+iob®/v =1Jwb?/2v(1+i)=a(1+i) and & =x/b. The above

expression for v°(£) can now be substituted into Eq. 4.1-48 to get Eq.
12C.4-1.
b. Next we get the dissipation function, which for this

problem is @, = u(dv, /dx)*. The derivative of the velocity is

av dv°
z — m iwt
ox { dx ¢ }

and its square is obtained by using the relation (which should be
proven) R{u}R{v}=1[R{uv}+ R{uv*}], where u and v are complex
numbers and the asterisk indicates a complex conjugate:

(3o~ )]

Next we get the time average of the above function; the first term
vanishes because of the exponential (which contains sine and cosine
functions) and only the second term survives:

2 o o * o —_
(avz) _1 (dv J[dv] where dv’ _ vy ccoshe(1-€)

ax 2b%\ dx )\ dx dx b sinhc

from part (a). Then the time averaged dissipation function is:
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() ) [ e
- 1(1}0)2 (cc *)(cosh?(l— 5))(coshc(1- £))*
b (sinhc¢)(sinhc) *

~ 1(1,0)2 [cosh? a(1- £)cos? a(1- &) +sinh? a(1- &)sin’ a(1- £)]

2
2\ b sinh? acos? a + cosh? asin® a

To get the third line of the above we have used the identity

cosha(1+i)(1- &) =cosha(l- &)cosa(l- &) +isinha(l- &)sina(l- &)

which should be verified. Then, finally, use sin?@+cos?6=1 and
cosh? @ —sinh® 6 =1 to simplify the above expression for ®,, thus:

®, - uz(vo)z[cosz a(1-&)+sinh®a(1- 5)} N aQ(Z;o)Ze_zag

b sin a+sinh? a

the last expression being a limiting expression for very large
frequencies.

c. To get the time averaged temperature distribution, we use
Eq. 11C.4-4, thus

d°T _ ub® a2(v°j2 cos®a(1- £) +sinh’ a(1- &)
ae* "k b sin? g +sinh?a

Then introducing a new variable n=1-¢ we write

sin?a +sinh?a

d*T _ o} ( cos®an+sinh®an
d(an)*  k

Integration once then gives

dT __ _po; (sinZan + sinhZan] o
d(an) 4k \ sin®a+sinh’a !
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and a further integration then yields

2 .2 : 2
= Moy sin®an+sinh®an
T=- +Can+C

4k[ sin?a+sinh?a ) S

The constants of integration may then be determined, so that we get
finally:

— 2 in2 - inh2 1-
T_T(’:%[(l_é)_sm u(:mfzi;nhzz( 5)}

For the high-frequency limit, we get

T-Ty= %[(1-(2“5)— E(1-e?)]

(Note: The solution given here for finding the dissipation function
does not use Eq. 11C.4-1 and is hence somewhat easier than the
method suggested in the text. It does, however, require somewhat
more familiarity with doing manipulations with complex variables.)
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11C.5 Heat transfer in a falling non-Newtonian film
For the non-Newtonian falling film problem, the velocity
distribution has been found in Problem 7B.1:

A i o

This can be rewritten in terms of the coordinate y, which is the
distance from the solid surface

(Yn)+1
Uz:vzmax{l_(l—l) :‘
. 1)

When this expression is expanded in a Taylor series, we get

1 y) 1(1 1 yjz
= 1-1+ =+1|| L |-=| =+1||=|[ & | +-
o v“““[ ’”(;ﬁ )(5) 2!(:1+ )[n)(s *
For positions very close to the wall, this can be approximated by

- 1Y
vz - Uz,max(n + 1)( 5)

Inserting the expression for the maximum velocity, we get

Yn
(P89
v.=(22)"y

which simplifies to Eq. 11B.4-1 for a Newtonian fluid.
Therefore the solution in Problem 11B.4-1 may be taken over

for a power-law fluid by replacing B = uk/ pzé},g5 = (k/ pép )(,u/pg5)
(just below Eq. 11B.4-3) by B :(k/ pép)(m/pgé)l/". The quantity B

enters into Eq. 11B.4-8 via the variable 7, and explicitly in Eq. 11B.4-
9.
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