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10A.2 Viscosity variation and velocity gradients in a nonisothermal film.

a. We begin by determining the temperature at which the logarthmic discrep-
ancy, A, between the two viscosity representations in Eq. 10.5-18 is largest. The
discrepancy is expressed as follows:

= In(First p(z) function) - ln(Approximation to first p(z) function)
B Tg - T,s z
- T,T ToT§

Use of Eq. 10.5-1to express (z/6) in terms of temperatures then gives

o o0 (23] - - (32

B [T—To T—To]

| T T

The T-derivative of the logarithmic discrepancy is

dA B [To 1]

T LT T

Setting this derivative equal to zero, we get

To 1
ﬁzﬁ or T=Ts =+/ToTs

as the temperature of maximum discrepancy between the two expressions for In p(z).

b. For the conditions given,
u(To) = p(80°C) = 0.3548 x 1072 g/cm-s;
w(Ts) = p(100°C) = 0.2821 x 1072 g/cm-s;
T = 1/(273.15 + 80)(273.15 + 100) = 363.01 K or 89.86°C

Eqgs. 10.5-14 and 10.5-19 then give the viscosity at Ty as

e =eee| () (3:=2)]

0.2821 89.86 — 80
= (0.3548 cp) exp {(ln (0.3548)) (—100 —%0 )]
= (0.3548 cp) exp [(—0.2293)(0.493)] = 0.3169 cp

Three-point Newton interpolation of In g in Table 1.1-2 gives u = 0.3151 at 89.86°C,
so the largest relative discrepancy is A = —0.0057, or —0.6 percent of p(z).
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10A.3 Transpiration cooling.

a. In the absence of transpiration, Eq. 10.5-1 is indeterminate, but its limiting

form is obtainable by expressing the exponential functions as first-order Taylor
expansions in w, (and thus in Rp):

T-T, 1/r—1/R
T.—-Ty 1/kR—1/R

This profile, dcsignated as Oy, is tabulated here for the present geometry:

r, microns 100 200 300 400 500
(SN 1.000 0.375 0.1666... 0.0625 0

In the presence of transpiration with the given rate w, = 1 x 107° g/s, the
constant Ry in Eq.10.5-27 is

_ (1 x107° g/s)(0.25 cal/g-C)
= (4r)(6.13 x 10~% cal/cm-s-C)
= 0.003245 cm = 32.45 microns

R,

Equation 11.14-27 then gives, with r in microns,

T-T1 _ (exp(—32.45/r) — exp(—32.45/500))
Te—Ti  ((exp(—32.45/200) — exp(—32.45/500))

A table of this function, here called ©,, follows:

r, microns 100 200 300 400 500
Oy 1.000 0.406 0.185 0.070 0.000

c. The ratio of the heat conduction to the inner surface r = kR with the latter
transpiration rate to that with w, = 0 is, from Eq. 10.5-32,

Q__ ¢
Qo expgp—1
_ (Re(1-x)/xR)
" exp(Ro(1 — k)/kR) — 1

_ (32.45)(0.8)/100)
" exp(32.45)(0.8)/100) — 1
_ 0.2596 0876

exp(0.2596) — 1

Thus, this small rate of transpiration reduces the rate of heat conduction to the
inner surface by 12.4 percent.
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10A.4 Free-convection heat loss from a vertical surface.

The phys_i-cal properties for this problem are as follows, evaluated at an average
temperature T = (Tp + T1)/2 = 110°F = 43.33°C = 316.5K:

B =1/T = 0.00316K™*
P = pM/RT = 0.001154g/cm?
p=1.923 x 10"*g/cm-s from Table 1.1-2

C, = 1.007 J/g-K from Perry’s Handbook, 6th Ed., Table 3-212
= 0.2407 cal/g/K
k = 0.0276 W/m-K from Perry’s Handbook, 6th Ed., Table 3-212
=6.60 x 10 cal/s-cm-K

The Prandtl and Grashof numbers are then

ép.u
Pr= A
(0.2407cal/g-K)(1.923 x 10~ g/cm-s)
= =0.701, and
6.60 x 10-5cal/s-cmK) > an
—2 Am 2
Gr = P98 —T)H

2

_ (0.001154g/cm®)?(980.7cm /s?)(0.00316K " )([(150 — 70)/1.8]K)(30cm)*
B (1.923 x 10~%g/cm-s)?

=1.34 x 10®
The heat loss rate from one side of the plate, according to Eq. 10.5-51, is
Q = WHgag = WC - k((To — Ty) (GrPr)'/*
With Lorenz’ value of C, this gives

Q = (50cm)(0.548)(6.60 x 10 5cal/s-cm-s)([80/1.8]k)(1.34 x 10° x 0.701)!/4
= 7.9 cal/s

With the value C= 0.518 recommended by Whitaker for air, the result is

Q = 17.5cal/s
However, this value of C is based on a Prandtl number of 0.73 for air, rather than
the value 0.701 found at the present conditions from more recent data. Linear

extrapolation of the table on page 349 gives a C value of 0.516 at Pr= 0.701, and a
corrected heat loss rate of 7.4 cal/s.
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10A.5 Effect of free convection on the insulating value of a horzontal air
space.

The relevant properties of air at 1 atm and 100°C= 373.15 K are:

w = 0.02173 cp from Table 1.1-2 = 2.173 x 10™* g/cm-s
p=pM/RT = 1/(82.0578 x 373.15) = 0.0009461 g/cm?
B =1/T = 0.002680 K!

Cp = 1.015 J/g-K from CRC Handbook 2000-2001, pp. 6-1, 6-2
k = 31.40 mW/m-K from CRC Handbook 2000-2001, p. 6-185
=31.40 x 107° W/ecm-K
_(1.015 J/gK)(2.173 x 10~* g/cm-s)

Pr=Cou/k = =0.
r=Con/ 31.40 x 10-5 W/cm K 0.703

The no-flow state will be stable as long as the Rayleigh number, GrPr, does not
exceed its critical value of 1708, given in Ref. 4 of §10.6. This gives the following
restriction on the temperature difference:

P2gB(Ty — To)b* Cpp
p? k

<1708

or

1708u2
- < F
(T —To) < p2gBh Pr

_ 1708(2.173 x 107*)2

"~ (0.0009461 g/cm?)2(980.665 cm/s2)(0.002680 K~1)(2.5 cm)3(0.703)

=31°C

If a very thin metal sheet is placed midway between the two plates, forming two
cylindrical chambers of height h/2, then a corresponding calculation for the total
temperature difference across the two chambers gives the stability condition

(Ty —Tv) < (2)(8)(3.1) = 49.6°C

for absence of free convection.
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10B.1 Adiabatic frictionless processes in an ideal gas
a. For adiabatic frictionless processes, the fluxes may be set
equal to zero. Then the energy equation becomes

o DT (alnp) op oG, DT=_(¢91np) Dp
P=Dr =\ ainT), Dt M Dt \dInT), Dt

For an ideal gas p=pM/RT, so that (dInp/dInT), =-1. Then

DT _Dp

4 —(a+ bT +cT?) =
RT Dt Dt

Hence for a given element of moving fluid

(5+b+cT)dT=R@
T P

Integration from the initial state p,,T; gives answer (a) or
aln T +b(T-T,)+<(T2-T2)= RIn
T, 2 P1
c. For the data given, we have

aln 23, 204111%—3156 cal/ g -mole K

1
b(T, - T,)=18.41x107(800 - 300) = 9.205cal / g - mole - K

c 4.48x10°°
E(T§ -T?)=-=2——(800 - 300*) = -1.231cal / g - mole-K
Summing these results we get

=270

RInP2 211124 or P2oexplllZ
P P 1.987

Hence p, =270 atm




image7.png
10B.2 Viscous heating in laminar tube flow (asymptotic solutions)
a. From the energy equation we have

&o BT_kla( 8T)+ (80)2
Pl = o Mo

Into this we substitute the expression for the velocity distribution of a
Newtonian fluid in a circular tube: v, =v, .., [1 ~(r/ R)2 ] This leads,

then, to Eq. 10B.2-1.

b. Integration gives (for the isothermal wall) at large z :

2
T=_”;’;;;x r+CInr+C,

The constants may be evaluated using the boundary conditions given
in the problem, and the result is given in Eq. 10B.2-2.

c. To get the z dependence of the temperature we perform an
average over the cross-section

pép ZmaxJ‘ (1 é )édé d_T: 4Mvz max

f &2ede
which leads to the result
T =T, = (410, pngr [0C,R? )2

We then make the postulate in Eq. 10B.2-4, and substitute this
postulate into Eq. 10B.2-1 to get the following equation for f(r)

. 4o k 1d( df), 4BV men p2
& 1-g2). 2% max _ = + e
P Pvzlmax( 5 ) PC’,RZ R? é dé (‘: dé) R2 5

This equation may be integrated to give

F(r) = (102 e )62 - &%)

which leads to Eq. 10B.2-5.
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10B.3 Velocity distribution in a nonisothermal film
a. When x =46, the two terms inside the large bracket are
equal, but with opposite signs, and hence v, =0.
b. The second term in the bracket, being a constant, will not
contribute to the derivative. The factors in front of the bracket are
also constant. Therefore the derivative of the bracket is:

d o o 0+ (U8)In(ug/my) 1~ (x/8)n(uts/ite)( s\ (151
) (3/m0)™ [(ﬂs/ﬂo)x/&]z [“0] ln(#o)5

When we set x equal to zero in this expression we get

4.
dx

]

= (1/6)111('“5/'“0)_(1/5)]1‘(/‘5/#0) =0

x=0

Hence at x = 0, we have found that dv, /dx =0
c. Let M= h1(,u5/u0) and X =x/8. Then Eq. 10.5-20 becomes

; _pg62cosﬁ( 1 )(1+MX_1+M)
z “0 M2 eMX eM
_pgdicosB( 1\ (1+MX)eM - (1+M)e™*
R e SMXH)
g8 cos B (1+ MX)(1+ M+ M?+--) = (1+ M)(1+ MX + } M?X?+--.)
= Uo M2MEH)
_ pgeosP(1-X*+O(M)
- 2#0 eM(X+l)

When us — po (or M — 0), the above result simplifies to

0, 8B (1 _ya)_ pgcosﬁ(l_(ngJ
T 2p, 24, g

in agreement with Eq. 2.2-18.
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10B.4 Heat conduction in a spherical shell
In this problem, the heat flow is in the 6 direction. Then Eq.
B.9-3 simplifies to
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10B.4 Heat conduction in a spherical shell
In this problem, the heat flow is in the 6 direction. Then Eq.
@impliﬁes to

9 Please check

Li(sm gd_T) =0
sin6 do

The first integration leads to

4T iTr  C
9-—=C =
P O 40 sino

The second integration gives
T=C,Intan}6|+C, =C;Intan16+C,
Since the argument of the tangent function is always less than a right
angle, the absolute value sign is not needed.

The constants of integration are obtainable from the
boundary conditions, which give:

T, =C,Intanl6, +C,; T, =C,Intan}(z-6,)+C,

We next form the following differences:

T,~T,=C[Intan}6, ~Intan} (7 - ,)]= C, In—202%__

1 =T, =C[Intan}6, ~Intan}(7 - 6,)]=C, tanl(z-0,)
tan10

T—T2=C1[lntan%9—lntan%(7r—61)]=Cllnm

Finally we get for the temperature distribution in the shell:

T-T, _ Inftan}6/tan (7 -6, )]
T,-T, In[tan}6,/tani(z-6,)|

This solution clearly satisfies the two boundary conditions.
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10B.5 Axial heat conduction in a wire

a. This problem involves purely axial flow of heat (by
conduction and convection) so that the energy equation is

L _PGvdr _dT _adT_&T
Pl gy =N a2 k dz  dz? dz  dz?

in which v, =-v, and A Epépv/k.
Integration of the differential equation gives

dT
-AT=—+C
dz !

At z=o, we know that T=T, and dT/dz=0; hence C, =-AT
Hence the first-order differential equation becomes

oo*

%Ze—z—AG) where 0=(T-T.)/(T,-T.)

in which (since ©(0)=1)

In®@=-Az+InC, or 6= r-T. =e

This is just Eq. 10B.5-1.

b. For temperature-dependent physical properties we have
the following energy equation:

ol _1(0)0%@ - @

poo

dz dz(k”K(e)‘ziii)) or -4 L(@)Z(;) ;Z(K(O) dzj

inwhich A, = pép,,.,v /k‘,,. The first integration gives

+AL [ L(e)—dz-K( )‘f;;) (o)
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10B.6 Transpiration cooling in a planar system
We start with Eq. J of Table 10.5-1, and assume steady-state,
negligible change in pressure with distance, and negligible viscous
dissipation. Then for constant thermal conductivity this equation
simplifies to

év d_Tzkéz_T_ or d_@zdz_@
Py Vay —ay? dn  dn?

in which @=(T-T,)/(T,-T,), n=y/L, and ¢=pC,v,L/k, a
constant. This equation is to be solved with the boundary conditions
that ©(0)=1and ©(1)=0.

Set p=d0/dn to get the first-order separable equation

dp dp
=—/— or ——=¢dn
4 dn p

which may be integrated to give

Inp=¢n+InC, or —=p=Cpe”

This is also a first-order separable equation and integrating it gives
= on _Cim

©=C,[edn+C, =5 +C,

The constants of integration are then found from the boundary
conditions, and we get finally

e _o?

0=
1-¢?

The heat flux at y =0 is then

_ 4T __KTo-T)de| _KT.-T,) ¢
=) L dnl,, L 1-¢
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10B.7 Reduction of evaporation losses by transpiration
a. Without transpiration, we have from Eq. 10.5-31

_4nkR(T, -T,) _ 4n(}ft)(0.02Btu / hr-ft-°F)(327°F)

Qo

1-x 1
=82Btu/hr

b. With transpiration, we get from Eq. 10.5-30

4nRK(T,-T,) . .
Q= R —K1 with R, =w,C, /4nk
We do not know R, but we can get it by using an energy balance in
the form

vap é vap

Q=w,AH —[47{kR°}AI—AI
4

When this is inserted into the left side of Eq. 10.5-30, we get

My (T,-T,)

¢, T o(Ro/kR)(1-K) _q

This may be solved for R;, and then the energy balance may be used
to convert the result into an expression for Q

4nkAA C, (T, -
Q- Aty KR)ln[ A0y Txhl]

Cr 1-x AH,,,

_ 472(0.02)(91.7)( 0.5, ((0.22)(327)
T o (0.5) m[ oL7) 1}
= (104.76)In(1.7845) = (104.76)(0.5792) = 61 Btu/hr
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10B.8 Temperature distribution in an embedded sphere
a. In both regions the partial differential equation is

la(rzaTJ_l_ 1 a(smeaszo
r2or\" dr) r?sin090 0

b. At the surface of the embedded sphere the boundary
conditions are that T, =T, and that k,(dT,/dr) =k, (3T, /r).

c. For the temperature field inside the sphere, substitution of
Eq. 10B.8-1 into the terms in the above differential equation gives:

19d(, BTJ 3k, 4
— = 2A
2 [r {kl ok, r~ cosf

1 a(. T 3k
in0 2 |=-| 2% baricose
rzsi.n039(sm ae) [k1+2k0} oS

Outside the sphere we get for the same two terms

%%(1‘2 a—TJ =2Ar" cos6 - 2[7:-(_‘_—2](]%}( ) Arlcos0

3
21’ j—(sinezr—)z— 1- k—k[ J 2Ar~cos
r*sin 6 96 20 k, + 2k,

d. The boundary conditions are also satisfied:

3k, k, -k
[ARcos 6 = 10 ||ARcosO
[k1 2k, ] Ccos I:l [kx ok ﬂ cos

3k, 3k, k, -k,
A = A kol 3 Acos6
kl[k,+2k0:| cos @ ko[lir ko] cos 6 + l: K12 ko] cos
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10B.9 Freezing of a spherical drop
a. The heat conduction equation for the solid phase is

__(r —):0 (R, <r<R)

Two integrations lead to T= —(Cl/r) +C,. The constants of
integration are determined from the boundary conditions

ar
B.C.1: Atr=R;, T=Ty; B.C.2: Atr=R, —k—-=h(T-T.)

This leads to the following expressions:
Ty-T. CC.=T + T,-T.,
(YR)- (1/Rf) (k/nR?)" 72 ° [(VR)- (1R)- (k/nR?)]R,

The total heat flow across the spherical surface at 7 =R is then

Q= 47:R2( de)
dr

C =

k ) Ty-T.
<Ry (]
This can be rearranged to give the solution in the text.

b. We now have to equate the heat liberated on freezing at
r =Ry to the heat flowing out across the surface at r = R:

—47rR2(—

dR;  h-47R?:(T,-T.)
dt 1 (hR/k)+(hR?/kR; )

~{pafy)(47R7)
Integration then yields
~(oaB, )[R [1- (hR/K) + (R /KR, )|RFdR = R (T, ~ T..)[ dt

where #; is the time for the freezing of the entire droplet. Evaluation
of the integrals then leads to the expression in the text.
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10B.10 Temperature rise in a catalyst pellet

a. We make an energy balance over a spherical shell of
thickness Ar:

4mr’q,| —4n(r+Ar)q,),, +47r2ArS, =0

Then division by 47Ar gives

(7’2 q, )lr+Ar - (T2 q, )l,

-725,=0
Ar

When the limit is taken that Ar — 0 and use is made of the definition
of the first derivative, we get

d

dr(r q,) 5. =0

Insertion of Fourier's law then gives

d ar 20 _ * 3% i 2'_d_T_ 2¢ _
dr( kdr) r’S,=0 (**) or kdr(r dr)+rS =0

for the appropriate equation describing the heat conduction with
heat generation by chi! i’cal reaction and constant K.\  Please check

b. From Eq.(B ith the time=derivative ferm set equal to
zero, and all velocities™set equal to zero, and all derivatives other
than r derivatives set equal to zero gives the heat conduction
equation in spherical coordinates for a system with no chemical
reaction. Therefore, we have to add a term describing the heat
production per unit volume:

1 d( ,dT

which is the same as the result obtained in (a).
c. The above differential equation may be integrated in a
sequence of steps as follows:
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for the appropriate equation describing the heat conduction with
heat generation by chemical reaction and constant k.

b. From Eq. B.9-3, with the time=derivative term set equal to
zero, and all velocities set equal to zero, and all derivatives other
than r derivatives set equal to zero gives the heat conduction
equation in spherical coordinates for a system with no chemical
reaction. Therefore, we have to add a term describing the heat
production per unit volume:

which is the same as the result obtained in (a).
c. The above differential equation may be integrated in a
sequence of steps as follows:




image18.png
2
i(rz dT) __Scr . (rz dT) s +Cy; dT _ S, C1

ar\" dr k dr 3k @ 3k
S r2 C
T=-"- —ZLyC,  (**%)

The constant C; must be zero, because neither the temperature nor
its gradient are expected to be infinite. The heat loss to the
surroundings provides the second boundary condition needed for

getting C,:

Definition of heat transfer coefficient: q,|y=R = h(TR - g)

ar S.R
From Fourier's law: o =—k— =+=
q |r—R dr R 3
Equating these expressions: h(TR - Tg) = %5
2
Inserting T from (***): h(—sﬁ +Cy~ ng = SE’»R
2
Solving for C,: C,= Sc()l; 53:}1? +T,

Thus we finally get the temperature profile within the catalyst pellet:

S.R? V1] S.R
T-T,=2|1-| L
R EClE:

d..When the heat transfer coefficient goes to infinity, the last
term in the temperature distribution drops out.
e. The maximum temperature in the system is

S.R*> SR S.R? 2k
71, =R SR_SRIf
max " = T3y 6k(+Rh]

f. In Eq. (**) one would have to leave k inside the differential
operator, and insert the specific r dependence of both k and S, .
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10B.11 Stability of an exothermic reaction system
a. For the postulated steady-state solution

2
kZTZJrsCo exp(A(T-T,))=0  with T=T,at x=+B

b. Using the given dimensionless variables, we may rewrite
the problem as

d’e

?‘Fle@:() with @ZOat§=il
¢. Multiply the differential equation by 2d0/d¢ to get
40 d’e . de d(ae\’ . de°
2 ——+21—¢° =0 —| =] +24=—=
gt o ) g0

Integration then gives

2
do
(@) +22e°=C

We now use the fact that, from the symmetry of the problem, at £=0
we must have d@/d =0. Then if we let ©=0, at £ =0, we can get
an expression for C, and then write

2
(z—?j -2A(exp®, -exp®)=0

Note that we have not "evaluated" the integration constant C;, we

have merely replaced it by ©,, which has a recognizable physical
meaning.
¢. We next take the square root of both sides:

‘jl—c;— =122 \exp®, —exp©
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The minus sign has been selected, since the left side of the differential
equation is inherently negative, and the quantity under the square-
root sign is positive. Then we integrate over half the plate

) de 0
—— =24 d
'[0 \exp@, —exp® \/_'[1 ¢

d. The integral can be done analytically by making the change
of variable y* =exp(®-0,):

1 J_@O de
VexpO, /1~ exp(€-©,)
X 2d
= exp("'lz‘G)O )pr(—%eo);—l——y_yz—

=2exp(-10, Jarccosh(exp10,)

The integral over y can be found in an integral table.
Combining these last two results we get

exp(-10, Jarccosh(exp31©,) =14

e. For A >0.88 no value of ®, can be found. This means that
when S, is too large, or B is too large, or k is too small, then the heat
cannot be dissipated fast enough.

This is an important example, because it illustrates that it is
not always possible to get a steady-state solution to a physical
problem. To do a complete analysis of this problem, it would be
necessary to solve the problem with the time-derivative term
included.
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10B.12 Laminar annular flow with constant wall heat flux
The equation analogous to Eq. 9.9-12 for the annular flow is

2 2
A r 1-x R\|oT _,1d( odT
C 1-{=| - In| — =k=
P ”vz'"““{ (RJ m(l/x) ( r)] dz r ar(r 81')
where Eq. 2.4-14 has been used. We now introduce dimensionless

variables: £=r/R, {= kz/pépvzlmaxRZ, and ©=k(T -T,)/q,R. Then
the above energy equation becomes

-0l %

This is to be solved with the boundary conditions

Atr=kR, —k%:qo or até=k, —%%:1
Atr=R, —k%=0 or até=], —%=0
Atz=0, T=T, or at¢{=0, ©=0

We seek an asymptotic solution for large downstream distances of
the form O(&,§) = Cyd +¥(&). The function ¥(&) has to satisfy

o 5 elo-e-0-eid]

The first and second integrations lead to (cf. Eq. 9.9-27)

Y _ E &) 1=k (¢ . 8. G
%"C"Kz 4] Ink (21“5 4”*:
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The constants C, and C; are determined from the boundary
conditionsat £=k and £=1:

I—KZ)
K(l+
CG=—2E — and =- L
(1—K4)+(1_K (1—K4)+(1_K)
Ink yan

Then the equation for the radial distribution of the temperature is

) 2} 1-x2 1-x?
. KE KI_T]_ o (mg—l)]—;{n — ]ln«ﬁ

= +C,

The constant C, can be obtained by using an integral condition,
similar to that in Eq. 9.9-24 or 25

27kRz - gy = 'f;"jf;pép (T-T,)v,rdrd0 or ¢= —};J: OpEdE

where ¢=v,/v, ... This gives

R
[(1-€7)- (1-w7) 128 e

or

_lal (& &) 1-x(E, . &
0-;}({@{[4 16) 1m<( In¢ J]+C11n§+cz}.
¢

[(1- &) (1-7) 2 [ et
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10B.13 Unsteady-state heating of a sphere )
a. The time-dependent heat conduction equation is

IT _ 19(,dT 0 _19(,,00
ER ar( &r) or ar 5235[5235)

In the second form, we have introduced the dimensionless variables:
O=(T-Ty)/T,-T,), £=1/R, and 7=at/R?. The solution in Eq.
11B.14-1 is, in terms of the same dimensionless variables

ad nsinnmé 2.2
0=1+2)(-1)'——=2™"""
nzd( ) nné

b. We do the differentiations; then it is clear that the first and
last expression below are the same. Therefore Eq. 10B.13-1 satisfies
the differential equation.

@_ < 1V (22 Sinnn'g -n’n’t
5 —2;?:1( 1) ( n’m )——ennf

200 _ & gy, [Ecosnmé  sinnmE ] g2,
& —==2%(-1) nn[m—n” )

(1) m[[cosnné _nagsinnaé  cosnaé | g2,
nm nm nm

&
VY
(a0

N
|
\m|®
N—
Il
N
it

1 2 00 <y, | nasinnmd | e,
g aé(é é) 220 "”[ nnZ

c. When & =1, we get from Eq. 10B.13-1.

0= 1+22( 1)"5‘“”” -ttt
nmw

since sinnz =0 for all integral values of n.
d. Inasmuch as
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the solution for £ =0 is certainly finite:

2

o= 1+22( 1)

e. In dimensionless form Eq. 10B.13-2 is

1= 25:(‘1)" sinnmé

nné

Then, multiplying by sinmzé and integrating gives

~[lesinmnede = 22 (1" [ sinmng sinnzgd

The left side can be evaluated as follows:

m 1 mn
—| Esinmaédé = - " xsinxdx = — sinx — xcosx
gsinmagag =L ; o s
1 1 1 m
=+ 5 (mmcosmn) = —cosmm = —(-1)
(mm) mn mr

The right side may be evaluated thus:
22( 1)" ——I sinnzg sinmnédé = 22( 1) g I sinnx sinmxdx
n=1
n
=23 (-1)"—| 25, | =—(-1
ngl( T’lﬂ'z ( 2 mn) m”( )

Thus the two sides are equal, and it is proven that the initial
condition is indeed satisfied.
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10B.14 Dimensionless variables for free convection

a. When the proposed dimensionless quantities are intro-
duced, Egs. 10B.14-1 to 3 follow directly. Nothing more needs to be
said.

b. We can convert Eq. 10B.14-1 into Eq. 10.5-44 if we require
that

Uy yO
I 070 — 1
o

Then, when (I) is substituted into Eq. 10B.14-2, then the latter may be
converted into Eq. 10.5-45 if we also require that

(1) K _pr
PYoUyo

(III) yogﬁ(TO - Tl) =Pr

Uyovzo
Next we substitute (I) into Eq. 10B.14-3 and further require that

k

vy =
PC,Yo0y0

=1

then Eq. 10B.14-3 becomes Eq. 10.5-35.

We thus have four equations from which to determine the
three "scale factors" y,, v, and v,,. However, it can be seen that
Egs. (I )and (IV) are not independent, since multiplication of Eq. (IV)
by Pr just gives Eq. (I). Thus we have three independent equations
from which to determine three unknowns.

We now eliminate y, by multiplying Egs. (I) and (II) to get Eq.
(V), and by dividing Eq. (IIT) by Eq. (I) to get Eq. (VI):

UZO# =P
Y v%,Hp f
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Introducing the abbreviation B=pgB(T, - T;), Eq. (V) can be solved
for v,y to give Eq. (VII), and then v, is obtained from Eq. (V) to give
Eq. (VIII):

BH _ [aBH
V) o,=, [P eBH
pPr U
3
(VI)  0,0= | [0BH _ o B
HpPr\ u uH

Finally y, may be obtained from Egs. (IV) and (VIII):

k uH ouH
Yo=—= = o455 = Please check
PC,0y0 a’B B A
The reciprocals of these last three quantities appear in Egs.

to 43.

c. If all the dimensionless groups were set equal to unit, then
combination of Egs. (II) and (IV) would give Pr = 1, thereby severely
restricting the applicability of the results.

Ix)
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10C.1 Free convection in a slot
a. The equations of change are simplified as follows:

Continuity:
% = —(%0‘0,‘) and at steady state and v, =0 we get 0=0
Motion
J J _ v, v\ &
&p’vz = _(Epvzvz)"-g—zp-_pg-"#( axZZ + ay21)+pﬁg(T_T) or
v, _~ . _
0=p— +pBg(T-T)  since p =-Ppgz + constant
Energy:
2
O=k§7€ whence T=T+Ay

b. The boundary conditions are;
v,(¥B,y)=0 v, isanodd functionofy  T(x,0)-T =0.

c. To get the velocity profiles we rearrange the equation of
motion as follows:

v, _ pBgA
BE
ox u
This may be integrated to give:
pBgA pBgAB (. (x?
'Uz(xty)=— 2 x’y+Cix+C, or vz(x,y)=T 1— 3 y

d. For water at 20°C , p =0.9982 g/cc and B =0.00021 ("C).
The maximum velocity will occur at x =0 and y = W, so that
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Hence the corresponding temperature gradient will be

2/‘02 max
A= —Fmax
PBSB*W

2(1.0019%107 g/cm- S)(Mlx_z)g})

3600 s

(0.99823 g/cm?)(0.00021 °C")(980.7 cm/s?)(0.01 cm)?(0.2 cm)

=0.271 °C/cm
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10C.2 Tangential annular flow of a highly viscous liquid
First, rewrite Eq. 10.5-13 to eliminate N in favor of the
Brinkman number Br, which appears in Eq. 9.7-9:

o-(1- B em 21 2)-1- )]

To show that this reduces to Eq. 9.7-9 in the limit of a very thin
annulus, begin by taking the limit of the term that does not contain Br
and then we treat the term containing Br.

Term without Br:

Welet k=1-¢ and £=1-¢(1-1), where 7 is the x/b of
§9.7. Then using Eq. C.3-2 we find

_, ea-m+iefa-nr+-]
Ink Te+1e?+]

=1-(1-n)+0(e)=n+O(¢)

In the limit of vanishing &, this leads to the last term in Eq. 9.7-9.
Term with Br:
The coefficient of Br is now

(1-¢? Hl_ 1 )
(2e-€2)’ [1-e-n))
_( 1 ]e(l—n)+%ez(1—n)2+...

1_
(1-¢)? e+lel+

When everything is expanded in terms of powers of ¢, we find

A 11 2e(1- )26t )
4

—(1—[1 +2e+3¢? +~-])([1— nl+ie(-n+n? )+)]

Simplification of this expression leads to
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Then cancellation of some terms gives

82 (1-3e+-)[Be> (1= m)" - {3¢> (1= 1)~ &> (=n + n* -]

4
=Z(1—3e+~~~)[—3(—n+ n*)+(-n+ n2)+---]
1
=5(n-n7)

This is in agreement with the term in Eq. 9.7-9 that is multiplied by
Br.
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10C.3 Heat conduction with variable thermal conductivity
First we obtain an expression for the gradient of F:

VF= V( [ k4T + constant)

= [(Vk)dT

=f K S Tar

ar

The V operator can be taken inside the integral, since it involves only
differentiation with respect to position coordinates and therefore
commutes with the integration over T. Since k depends solely on T
(which may in turn depend on the position coordinates), we must

differentiate with respect to T and then perform the gradient
operation on T, as shown above.

Next, since VT depends on position coordinates, and not on
T, the VT may be removed from the integral sign

dk
VF=VT|—T
Jar

When the integration is performed, we get
VEF=kVT

We now form the Laplacian of F

V2F =(V-VF)=(V-kVT)

But (V-kVT)=0 by the equation of energy. Therefore, we have
finally

V2E=0
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10C.4 Effective thermal conductivity of a solid with spherical
inclusions

a. At very large distances from the region containing the
inclusions, the coordinates of the various inclusions (r,0) will not be
very different from one another. Furthermore, if the density of the
inclusions is small, the effect of the various inclusions will be
additive. Therefore to get the temperature field far from the region
containing the inclusions, we can write

k, -k
Ty(r,0)-T°=|1- 02 1A
o(7,0) [ nk1+2k0( ) :| rcos 6

in which n is the number of inclusions, each with a thermal
conductivity k;. This is the equation that the describes the system in
Fig. 10C.4(a).

b. For the system in Fig. 10C.4(b), we can apply Eq. 10B.8-2
directly

kg -k, (RN?
Ty(r,0)-T° = 1—8—“—"—(—) Arcos6
o(r,0) [ T T2k r rcos

regarding the shaded sphere as a hypothetical material of thermal
conductivity k.

c. Next we relate the volume of the inclusions in the true
system to the effective volume of the inclusions in the equivalent
system: 47R*n=4%nR"¢.Hence R =(n/¢)R>.

d. We can now equate the right sides of the above two
equations for the temperature profiles far from the origin

ianly) ()
k +2ko\ 1 keff +2k, [0}
We can now solve for the effective thermal conductivity, and express

the ratio k. /k, as 1 + (deviation resulting from the inclusions). This
is exactly Eq. 8.6-1.
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10C.5 Effect of surface-tension gradients on a falling film
a. If we let I be the gas phase and II be the liquid phase, then
the contribution from Eq. 10C.5-4 to the stress component 7,, will be
the z-component of

[6x-‘r"]=V50 or ‘ri:%j

Hence, in Eq. 2.2-13 has to be replaced by

7, =(0gcosB)x+ A

When this is combined with Newton's law of viscosity, Eq. 2.2-14, we
get

dv, _
o =(pgcosB)x+A

When this is integrated, and the no-slip boundary condition at the
wall is used, we obtain the velocity profile as follows:

() [ 3)
v, = 2 1 5 + 2 1 5

b. The mass rate of flow in the film is
W 8 1
w= [ [} po.dxdy = pWS [ v.dE
2
=pw5[ SW(F £2)dg +A75j;(1— i)dé}

_ p*Wgs® . ApWs?
3u 2u
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10A.1 Temperature in a friction bearing.

The method given in the solution of Problem 9A.3, based on Eq. 9.7-9, gives
the maximum temperature rise in the lubricant as

1 uQ?R?

T8 &

_ 1(2.0 g/cm-s)(80007/60 rad/s)?(2.54 cm)? : 16.9C
8 ([4.0 x 10~ x 4.1840 x 107] g-em/s?K) :

Tmax —Th

and the maximum temperature Tyax as 217C.

Next, we consider the analysis given in §10_5; which includes the curvature
effects. Since Ty and Ty are equal, Eq. 10.5-14is applicable and gives

e = 21In(1/k)
N (/e - 1)

as the location where the temperature Tiax occurs. For this problem, « = 1/1.002;
hence,

21n(1.002)

Emax = Rl_om =0.999001165

which location is essentially in the middle of the gap.

To evaluate Tipax, we multiply Eq.10.5-13 by (T3 — T) to make each term
finite; the result (after division by x* in the numerator and denominator) is

T = i [ 8) - ()

With € = €mnax, We obtain the maximum temperature rise in this system as

_ (2.0 g/cm-s)(80007/60 rad/s)*(2.54 cm)? ) 1

7 ([4.0 x 10~* x 4.1840 x 107] g-em/s2-K)  (1.002% — 1)2
- [-0.002000667 + 0.002002667)

= 8.438 x 10® - [2.00 x 10°] = 16.9C

Tmax - Tx

in agreement with the previous calculation. This good agreement is attributed to
the narrowness of the gap relative to the cylinder radii in this problem.




